Question

In: Physics

A scientist shines a beam of white light through a diffraction grating (with 500linesmm), producing a...

A scientist shines a beam of white light through a diffraction grating (with 500linesmm), producing a diffraction pattern. The spectrometer only looks at the m=1 bright spot! (The m=2 spectrum will not fit in the view.)

a) Calculate the distance d between individual slits (also called “lines”).


b) The white light spreads into its component colors. For red light (=700nm), what is the diffraction angle θR (in degrees)?



c) For violet light (=400nm), what is the diffraction angle θV (in degrees)?

Solutions

Expert Solution

a) Given that the diffraction grating is of 500lines/mm

So the width of each slit will be

  

Width of the slit will be equal to the distance between individual slits because the slit width is same for every slit in a difraction grating.So the distance between the slits is 210-6m

b) Given wavelength For red light,

We know that equation for bright spot is,

By substituting we get,

  

  

  

so difraction angle for red light   o

c) Given wavelength for violet light

We know that equation for bright spot is

   

Substituting the values we get,

  

  

  

  So diffraction angle for violet light  o

  


Related Solutions

1)What color of laser light shines through a diffraction grating with a line density of 500...
1)What color of laser light shines through a diffraction grating with a line density of 500 lines/mm if the third maxima from the central maxima (m=3) is at an angle of 45°? Show all work in your answer. Hint: Calculate the wavelength then use Table 1 to identify the color.​ 2) How would the interference pattern produced by a diffraction grating change if the laser light changed from red to blue?
Light shines on a diffraction grating with a 4000 rulings (slits) per cm, which is immersed...
Light shines on a diffraction grating with a 4000 rulings (slits) per cm, which is immersed in water (refractive index=1.33), resulting in a 3rd order spectral line at a diffraction angle of 35 degrees. What is the wavelength of the light in air?
Laser light of some wavelength λ1 shines on a diffraction grating with 285 lines/mm at normal...
Laser light of some wavelength λ1 shines on a diffraction grating with 285 lines/mm at normal incidence, producing a pattern of maxima on a large screen 1.50 m from the grating. The first principal maximum is observed to be at an angle of 8.20° from the central maximum. (a) Determine the wavelength of the incident light. (b) A second laser of wavelength λ2 is added, and it is observed that the third principal maximum of λ2 is at the same...
a laser beam passes through a diffraction grating and the second- order bright spot is produced...
a laser beam passes through a diffraction grating and the second- order bright spot is produced at an angle of 22.0 degree from the main central axis. What is the highest order bright spot that can be produced by this arrangement?
Two colors of light, green and yellow, undergoes diffraction through the same diffraction grating. Which color...
Two colors of light, green and yellow, undergoes diffraction through the same diffraction grating. Which color of light sees greater diffraction angle? Both colors undergo the same diffraction angle. Green Yellow We will measure the spectra of helium, mercury and neon gas discharge tubes. True False Light is emitted when a valence electron moves from a lower state to an excited state. True False Light produced from spontaneous emission is incoherent. True False
1. Short wavelengths of light passed through a diffraction grating create fringes that are _____ than...
1. Short wavelengths of light passed through a diffraction grating create fringes that are _____ than long wavelengths of light. more spread out more compact brighter None of the above 12. The spacing of the diffraction pattern on a viewing screen does not depend on the distance from the diffraction grating to the screen. True False 2. A transmission diffraction grating produces a diffraction pattern with the first order angle at 35 degrees when light with a wavelength of 600...
A Laser light is passed through a grating having 300 lines/mm and diffraction pattern is observed...
A Laser light is passed through a grating having 300 lines/mm and diffraction pattern is observed at 51.5 cm, 53.5cm and 55.5cm respectively. The diffraction pattern having separation of 103mm,107mm and 111mm between the maximum and minimum interference correspondingly. Calculate the wavelength of laser? Also calculate the percentage error if the actual wavelength of laser is 660nm.  
Visible light passes through a diffraction grating that has 900 slits per centimeter, and the interference...
Visible light passes through a diffraction grating that has 900 slits per centimeter, and the interference pattern is observed on a screen that is 2.80m from the grating. In the first-order spectrum, maxima for two different wavelengths are separated on the screen by 3.10mm . What is the difference between these wavelengths? in meters
U22P1 In the reflection and refraction lab a beam of white light is passed through a...
U22P1 In the reflection and refraction lab a beam of white light is passed through a prism at an angle of 30 and separated into a spectrum. The red portion of the spectrum is measured to be at an angle of 52 and the blue at 55 . What is the index of refraction for each color? nred = ________ nblue = _______ What is the velocity of the blue light as it passes through the prism. vblue prism =...
Laser light from argon ion laser of wavelength 488.0 nm passes through a diffraction grating. The...
Laser light from argon ion laser of wavelength 488.0 nm passes through a diffraction grating. The first bright spots occur at an angle 6.726 degree left and right from the central maximum. How many additional pares of bright spots are there beyond the first bright spots?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT