Question

In: Physics

A one-meter pipe is open at one end only. Describe the locations of the nodes and...

A one-meter pipe is open at one end only. Describe the locations of the nodes and antinodes of the pressure wave. Of the wave in air movement.

Solutions

Expert Solution

hi any doubts leave a comment..

THANKS


Related Solutions

A 20.0 cm long organ pipe is filled with air and is open at one end...
A 20.0 cm long organ pipe is filled with air and is open at one end and closed at the other. The velocity of sound in air at 0
A 0.5 meter long pipe is open on both ends. Assume the speed of sound in...
A 0.5 meter long pipe is open on both ends. Assume the speed of sound in air is 343 m/s. A) What is the longest wavelength of sound that can be resonant in the pipe? B) What is the fundamental frequency of sound in this pipe? C) What is the frequency of the 2nd and 3rd harmonic of sound in this pipe? D) What is the wavelength of the 2nd and 3rd harmonic of sound in this pipe?
A pipe of diameter 350mm at one end and the diameter at the other end is...
A pipe of diameter 350mm at one end and the diameter at the other end is 200mm. The datum head is same for both ends. Calculate (i) Intensity of pressure at the smaller end if the pressure at the bigger end is 40.5 N/cm2. (ii) Determine the head loss between smaller end and bigger end. Take discharge through the pipe as 40 litres/sec. (iii) Scope for this obtained results of head loss between both ends the like that only!
A pipe of diameter 350mm at one end and the diameter at the other end is...
A pipe of diameter 350mm at one end and the diameter at the other end is 200mm. The datum head is same for both ends. Calculate (i) Intensity of pressure at the smaller end if the pressure at the bigger end is 40.5 N/cm2. (ii) Determine the head loss between smaller end and bigger end. Take discharge through the pipe as 40 litres/sec. (iii) Scope for this obtained results of head loss between both ends.
A drainage pipe running under a highway is 20 meters long. One end of the pipe...
A drainage pipe running under a highway is 20 meters long. One end of the pipe is open and the other is clogged by debris. The wind blowing across the open end causes oscillations in the pipe. a) If the speed of sound on that particular day is 340 meters per second, what will be the fundamental frequency of oscillation in the pipe? b) What will be the frequency of the highest harmonic audible to the human ear. (Assume that...
The end of a stopped pipe is to be cut off so that the pipe will...
The end of a stopped pipe is to be cut off so that the pipe will be open. If the stopped pipe has a total length L, what fraction of L should be cut off so that the fundamental mode of the resulting open pipe has the same frequency as the fifth harmonic (n=5) of the original stopped pipe? Express your answer in terms of L.
A 1 kg rock is hung from one end of a meter at the 0 cm...
A 1 kg rock is hung from one end of a meter at the 0 cm mark so that the meter is balanced as a balance when the filter is at the 25 cm mark. From this information, what is the mass of the meter?
A. Find the length of an organ pipe closed at one end that produces a first...
A. Find the length of an organ pipe closed at one end that produces a first overtone frequency of 276 Hz when air temperature is 21.3ºC . B. Find the length of an organ pipe closed at one end that produces a first overtone frequency of 276 Hz when air temperature is 21.3ºC . C. Electromagnetic radiation having a 73.8 μm wavelength is classified as infrared radiation. What is its frequency in 1013 Hz? D. Find the intensity of an...
A very long pipe is capped at one end with a semipermeable membrane. How deep (in...
A very long pipe is capped at one end with a semipermeable membrane. How deep (in meters) must the pipe be immersed into the sea for fresh water to begin to pass through the membrane? Assume the water to be at 20.0°C and treat it as a 0.700 M NaCl solution. The density of seawater is 1.03 g/cm3 and the acceleration due to gravity is 9.81 m/s2.
Consider a pipe that is closed at one end. Sketch the standing wave pattern in each...
Consider a pipe that is closed at one end. Sketch the standing wave pattern in each of the following situations; showing the regions of high and low air pressure variations (pressure antinodes and pressure nodes). Then formulate equations that relate the wavelength and frequency to the length of the pipe. A. Tube with one end open ("closed tube"): fundamental B. Tube with one end open ("closed tube"): first overture (3rd harmonic) C. Find the ratio of the first overture and...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT