Question

In: Physics

A 1 kg rock is hung from one end of a meter at the 0 cm...

A 1 kg rock is hung from one end of a meter at the 0 cm mark so that the meter is balanced as a balance when the filter is at the 25 cm mark. From this information, what is the mass of the meter?

Solutions

Expert Solution

Solution) m1 = 1 kg

M = ?

Net torque = 0

(m1)g(0.25) - (MgL)/(4) = 0

L = 1 m

(1)(0.25) - (M)(0.25) = 0

M(0.25) = 1(0.25)

M = 1 kg


Related Solutions

1. A 12.0 kg sign is to be hung from the end of a uniform horizontal...
1. A 12.0 kg sign is to be hung from the end of a uniform horizontal beam of length 2.50 m and mass 55.0 kg. A vertical wire supports the beam near the end where the sign is located, and a pin attaches the beam to a wall on the opposite end of the beam. (a) If the pin can withstand a maximum force of 100 N, find the minimum distance from the wall that the vertical wire can be...
A 1-kg ball is tied to the end of a 2-meter string and revolved in a...
A 1-kg ball is tied to the end of a 2-meter string and revolved in a horizontal plane making a 30o angle with the vertical. (a) What is the ball's speed? (b) If the ball is now revolved so that its speed is 4m/s, what angle does the string need to make with the vertical? (c) If the string can withstand a maximum tension of 10 N, what is the highest speed at which the ball can travel?
A spherical rock (R= 19 cm, p=3350 kg/m^3) is attached to the end of a copper...
A spherical rock (R= 19 cm, p=3350 kg/m^3) is attached to the end of a copper wire (diameter 3 mm, effective length of 1.21 m) and then revolved in a circular path in a vertical plane with a period of 0.97 s. Determine the maximum and the minimum length of the copper wire. (You may assume the path remains circular and the motion is uniform).
When you stand 1 meter away from the loudspeakers for a rock band, it is just...
When you stand 1 meter away from the loudspeakers for a rock band, it is just on the threshold of pain (approximately 120 dB). How far away should you stand to reduce the sound intensity level to 60 dB, equivalent to an everyday normal conversation?
A meter stick is balanced at the 50 cm mark. You tie a 10 kg weight...
A meter stick is balanced at the 50 cm mark. You tie a 10 kg weight at the 10 cm mark, while 20 kg weight is placed at the 80 cm mark. Where should a 20 kg weight be placed so the meter stick will again be balanced?
A fulcrum is placed at the 55 cm position of a 100 cm (1 meter) stick...
A fulcrum is placed at the 55 cm position of a 100 cm (1 meter) stick with a mass of 18 kg. a 10 kg mass is placed at 70 cm position. where must a 5 kg mass be placed so that the net torque is zero? (assume the mass of the meter stick is uniformly distributed)
A spring of equilibrium (un-stretched) length L0 is hung vertically from one end. A mass M...
A spring of equilibrium (un-stretched) length L0 is hung vertically from one end. A mass M is attached to the other end of the spring and lowered so that the mass hangs stationary with the spring stretched a distance ΔL. The position of the bottom end of the un-stretched spring is defined as y=0 and shown by the (upper) blue line in the figure. The position of the end of the stretched spring is shown by the (lower) red line...
an 10 kg object is hung from a spring attached to a fixed support. The spring...
an 10 kg object is hung from a spring attached to a fixed support. The spring constant of the spring is k=40 Nm**(-1) (I mean to the power of -1) Suppose an external downward force of magnitude f(T) = 20 e **(-2t) N is applied to the object, and damping due to air resistence occurs with damping constant beta = 40 N s m **(-1). Let y(t) denote the distance in meters of the object below its equilibrium position at...
A mass m = 1 kg is suspended from a spring that is stretched 1 cm...
A mass m = 1 kg is suspended from a spring that is stretched 1 cm under the influence of the weight of this mass. Now a periodic force is applied external of F (t) = 200 cos (vt) on the mass, which was initially in static balance. Disregarding all friction, get a relationship for position of the mass as a function of time, x (t). Also determine the value of ω which will cause resonance to occur
A 5.50 −kg−kg ball is dropped from a height of 10.0 mm above one end of...
A 5.50 −kg−kg ball is dropped from a height of 10.0 mm above one end of a uniform bar that pivots at its center. The bar has mass 9.50 kgkg and is 6.80 mm in length. At the other end of the bar sits another 5.30 −kg−kg ball, unattached to the bar. The dropped ball sticks to the bar after the collision. How high will the other ball go after the collision?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT