Question

In: Physics

A railroad car of mass 3.10 ✕ 10^4 kg moving at 3.50 m/s collides and couples...

A railroad car of mass 3.10 ✕ 10^4 kg moving at 3.50 m/s collides and couples with two coupled railroad cars, each of the same mass as the single car and moving in the same direction at 1.20 m/s.

(a) What is the speed of the three coupled cars after the collision?

__m/s

(b) How much kinetic energy is lost in the collision?

__J

Solutions

Expert Solution

A railroad car of mass 3.1*10^4 kg moving at 3.500 m/s collides and couples with two coupled railroad cars, each of the same mass as the single car and moving in the same direction at 1.20 m/s.

“couples” means all 3 cars are coupled together after the collision

Total mass after collision = 3 * 3.1 * 10^4 kg

Momentum is always conserved!

Initial momentum = 3.1 * 10^4 * 3.500 + 2 * 3.1 * 10^4 * 1.20

Final momentum = 3 * 3.1 * 10^4 * v

(a) What is the speed of the three coupled cars after the collision?

Final momentum = Initial momentum

3 * 3.1* 10^4 * v = 3.1 * 10^4 * 3.500 + 2 * 3.1* 10^4 * 1.20

solve

v = (5.9÷ 3) m/s is the velocity of the 3 coupled cars after the collision!

(b) How much kinetic energy is lost in the collision?

Initial KE = (½ * 3.1 * 10^4 * 3.500^2) + (½ * 2 * 3.1 * 10^4 * 1.20^2) =234515 j

Final KE = ½ * 3 * 3.1 * 10^4 * (5.9/3)^2 =179851.6667 j

Initial KE – Final KE = kinetic energy is lost in the collision

=54663.33333 j


Related Solutions

A railroad car of mass 18800 kg moving at 3.85 m/s collides and couples with two...
A railroad car of mass 18800 kg moving at 3.85 m/s collides and couples with two coupled railroad cars, each of the same mass as the single car and moving in the same direction at 2.31 m/s. How much kinetic energy is lost in the collision? Answer in units of J.
A railroad car of mass 35000 kg moving at 4.00 m/s collides and couples with two...
A railroad car of mass 35000 kg moving at 4.00 m/s collides and couples with two coupled railroad cars, each of the same mass as the single car and moving in the same direction at 2.00 m/s. a) What is the speed of the three coupled cars after the collision? b) How much kinetic energy is lost in the collision?
A railroad car of mass 2.20 ✕ 104 kg moving at 5.00 m/s collides and couples...
A railroad car of mass 2.20 ✕ 104 kg moving at 5.00 m/s collides and couples with two coupled railroad cars, each of the same mass as the single car and moving in the same direction at 1.20 m/s. (a) What is the speed of the three coupled cars after the collision?   _________________m/s (b) How much kinetic energy is lost in the collision?   ________________J
A railroad car moving at a speed of 3.20 m/s overtakes, collides, and couples with two...
A railroad car moving at a speed of 3.20 m/s overtakes, collides, and couples with two coupled railroad cars moving in the same direction at 1.20 m/s. All cars have a mass of mass 1.10 105 kg. Determine the following. (a) speed of the three coupled cars after the collision____ (Give your answer to at least two decimal places.) m/s (b) kinetic energy lost in the collision ___ J 2. A cue ball at rest on a frictionless pool table...
A 1200-kg car moving at  25 m/s suddenly collides with a stationary car of mass 1,002  If the...
A 1200-kg car moving at  25 m/s suddenly collides with a stationary car of mass 1,002  If the two vehicles lock together, what energy was lost to heat?
A 1700 kg car moving east at 17 m/s collides with a 1800 kg car moving...
A 1700 kg car moving east at 17 m/s collides with a 1800 kg car moving south at 20 m/s, and the two cars stick together. Consider east the positive x-direction and north the positive y-direction. a) What is the x-component of the initial momentum before the collision? ( -7100 kg·m/s, 64900 kg·m/s or 28900 kg·m/s) b) What is the y-component of the initial momentum before the collision? (-36000 kg·m/s, -7100 kg·m/s, 64900 kg·m/s or 36000 kg·m/s) c) What is...
A 2 kg mass moving to the right at 10 m/s collides elastically with a 2.4...
A 2 kg mass moving to the right at 10 m/s collides elastically with a 2.4 kg mass moving to the left at 8.33 m/s. After the collision the 2 kg mass moved at a speed vgf in a direction of 30 degrees and the 2.4 kg object at a speed vbf in a direction 30 degrees south of west. (5 pts) a. What is the difference between an elastic and an inelastic collision? (15 pts) b. Find the velocity...
A 1410-kg car moving east at 17.0 m/s collides with a 1880-kg car moving south at...
A 1410-kg car moving east at 17.0 m/s collides with a 1880-kg car moving south at 15.0 m/s, and the two cars connect together. a) What is the magnitude of the velocity of the cars right after the collision? (m/s) b) What is the direction of the cars right after the collision? Enter the angle in degrees where positive indicates north of east and negative indicates south of east. (°) c) How much kinetic energy was converted to another form...
A mass is moving at 10 m/s in the +x direction and it collides in a...
A mass is moving at 10 m/s in the +x direction and it collides in a perfectly elastic collision with a mass of 4 kg moving in the -x direction. The collision takes places in 0.22 seconds and after the collision the mass that was moving in the +x direction is moving in the -x direction at 8 m/s and the mass that was moving in the -x direction is moving in the +x direction at 14 m/s. What is...
A mass is moving at 10 m/s in the +x direction and it collides in a...
A mass is moving at 10 m/s in the +x direction and it collides in a perfectly elastic collision with a mass of 2 kg moving in the -x direction. The collision takes places in 0.21 seconds and after the collision the mass that was moving in the +x direction is moving in the -x direction at 9 m/s and the mass that was moving in the -x direction is moving in the +x direction at 13 m/s. What is...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT