Question

In: Physics

) A charge is spread out uniformly over a small non-conducting sphere. The small sphere shares...

) A charge is spread out uniformly over a small non-conducting sphere. The small sphere shares a center with a larger spherical shell with an inner radius of 6 ?? and an outer radius of 12 ??. a) Using Gauss’ Law, what is the magnitude of the charge on the nonconducting sphere if the field from the sphere is measured to be 8200 ?/? when 0.5 ?? from the center? b) What is the surface charge density on the inside of the conducting sphere? c) What is the surface charge density on the outside of the conducting sphere? d) What is the magnitude of the electric field at a point 15 ?? from the conducting sphere’s outer surface?

Solutions

Expert Solution


Related Solutions

A uniformly charged non-conducting sphere of radius 12 cm is centered at x=0. The sphere is...
A uniformly charged non-conducting sphere of radius 12 cm is centered at x=0. The sphere is uniformly charged with a charge density of ρ=+15 μC/m3. Find the work done by an external force when a point charge of +20 nC that is brought from infinity on the x-axis at a distance of 1 cm outside the surface of the sphere. Given the point charge held at its final position, what is the net electric field at x=5 cm on the...
A sphere of radius a is made out of insulating material and has a charge uniformly...
A sphere of radius a is made out of insulating material and has a charge uniformly distributed throughout its volume. (a) What is the electric field inside the sphere? (b) What is the electric field outside the sphere? (c) How do your answers change if a thin spherical shell of radius b, where b >a, is added to the system and contains a charge −Q uniformly distributed on its surface?
A charge of -7.00 nC is spread uniformly over the surface of one face of a...
A charge of -7.00 nC is spread uniformly over the surface of one face of a nonconducting disk of radius 1.30 cm . a) Find the magnitude of the electric field this disk produces at a point P on the axis of the disk a distance of 3.00 cm from its center. b) Suppose that the charge were all pushed away from the center and distributed uniformly on the outer rim of the disk. Find the magnitude of the electric...
A charge of -5.50nC is spread uniformly over the surface of one face of a nonconducting...
A charge of -5.50nC is spread uniformly over the surface of one face of a nonconducting disk of radius 1.00cm Part A Find the magnitude of the electric field this disk produces at a point P on the axis of the disk a distance of 3.00cm from its center. Part B Suppose that the charge were all pushed away from the center and distributed uniformly on the outer rim of the disk. Find the magnitude of the electric field at...
A solid conducting sphere of radius 2.4 cm has a charge of 23 nC distributed uniformly...
A solid conducting sphere of radius 2.4 cm has a charge of 23 nC distributed uniformly over its surface. Let A be a point 1.8 cm from the center of the sphere, S be a point on the surface of the sphere, and B be a point 5.4 cm from the center of the sphere. What are the electric potential differences (a)VS – VB and (b)VA – VB?
An isolated conducting sphere of radius R has charge Q uniformly distributed on its surface. What...
An isolated conducting sphere of radius R has charge Q uniformly distributed on its surface. What is the electric field (E) inside the conducting sphere at distance r = R/2 from center?
A non conducting sphere of radius R and uniform volume charge density is rotating with angular...
A non conducting sphere of radius R and uniform volume charge density is rotating with angular velocity, Omega. Assuming the center of the sphere is at the origin of the coordinate system, a) what is the magnitude and direction of the resulting magnetic field on the z axis for any arbitrary z distance away from the origin when z > R? b) same question as part a) but for z < R? Omega of the rotating sphere on the extra...
A spherical balloon is initially uncharged. If you spread positive charge uniformly over the balloon's surface...
A spherical balloon is initially uncharged. If you spread positive charge uniformly over the balloon's surface would it expand or contract? What would happen if you spread negative charge instead? According to my TA the correct answer is when it's positive charge it expands and when it's negative charge it contracts. What is the reasoning behind this? Please explain.
Two spherical shells have a common center. A -2.5  10-6 C charge is spread uniformly over the...
Two spherical shells have a common center. A -2.5  10-6 C charge is spread uniformly over the inner shell, which has a radius of 0.050 m. A +5.7  10-6 C charge is spread uniformly over the outer shell, which has a radius of 0.15 m. Find the magnitude and direction of the electric field at the following distances (measured from the common center). (a) 0.20 m magnitude    ---Select--- N/C C/N N C direction ---Select--- radially inward no direction radially outward (b) 0.10...
5) A solid conducting sphere of radius 2.00 cm has a charge of 8.00uC. A conducting...
5) A solid conducting sphere of radius 2.00 cm has a charge of 8.00uC. A conducting spherical shell of inner radius 4.00 cm and outer radius 5.00 cm is concentric with the solid sphere and has a charge of -4.00uC. Find the electric field at a) r= 1.00 cm b) r= 3.00 cm c) r= 4.50 cm d) r= 7.00 cm from the center of this charge configuration.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT