Question

In: Physics

A uniformly charged non-conducting sphere of radius 12 cm is centered at x=0. The sphere is...

A uniformly charged non-conducting sphere of radius 12 cm is
centered at x=0. The sphere is uniformly charged with a charge density of ρ=+15
μC/m3.

Find the work done by an external force when a point charge of +20 nC
that is brought from infinity on the x-axis at a distance of 1 cm outside the
surface of the sphere.

Given the point charge held at its final position, what is the net electric field
at x=5 cm on the x-axis?

What if the sphere is a conductor? And lets say has the same charge, what would a and b now be?

Solutions

Expert Solution

Hope u understand if any thing is wrong then comment first , i will improve my mistakes asap.

Please thumbs up...thanku


Related Solutions

A solid sphere of radius a is uniformly charged with a total charge Q > 0....
A solid sphere of radius a is uniformly charged with a total charge Q > 0. a. Use Gauss’s law to determine the electric field everywhere. b. Where is the magnitude of the electric field the largest? c. What is its value there? d. Find two distances from the centre of the sphere where the electric field has half of its maximum value.
A non-conducting sphere of radius R centered at O contains a spherical cavity of radius R’...
A non-conducting sphere of radius R centered at O contains a spherical cavity of radius R’ centered at O'. Let d be the displacement of O’relative to 0. Throughout the sphere, there is a uniform charge density rho_0 (except inside the cavity, which is uncharged). (a) Use the principle of superposition to write down an expression for E(r) everywhere. (b) Repeat (a) for the electric potential b(r).
An isolated charged conducting sphere has a radius R = 14.0 cm. At a distance of...
An isolated charged conducting sphere has a radius R = 14.0 cm. At a distance of r = 24.0 cm from the center of the sphere the electric field due to the sphere has a magnitude of E = 4.90 ✕ 104 N/C. (a) What is its surface charge density (in µC/m2)? µC/m2 (b) What is its capacitance (in pF)? pF (c) What If? A larger sphere of radius 30.0 cm is now added so as to be concentric with...
A solid conducting sphere of radius 2.4 cm has a charge of 23 nC distributed uniformly...
A solid conducting sphere of radius 2.4 cm has a charge of 23 nC distributed uniformly over its surface. Let A be a point 1.8 cm from the center of the sphere, S be a point on the surface of the sphere, and B be a point 5.4 cm from the center of the sphere. What are the electric potential differences (a)VS – VB and (b)VA – VB?
A metal sphere of radius 12 cm is charged using a rubber rod and acquires a...
A metal sphere of radius 12 cm is charged using a rubber rod and acquires a charge of Q 1 = +5.8 μC. It is brought into contact with another metal sphere having a radius of 6.5 cm and an initial charge of Q 2 = +2.0 μC. After coming into contact, the two spheres are carefully separated. (a) What is the charge that ends up on each sphere after being in contact? (b) How many excess protons or electrons...
(a) Plot the electric field of a charged conducting solid sphere of radius R as a...
(a) Plot the electric field of a charged conducting solid sphere of radius R as a function of the radial distance r, 0 < r < 1, from the center. (b) Plot the electric field of a uniformly charged nonconducting solid sphere of radius R as a function of the radial distance r, 0 < r < 1, from the center.
Shown is a uniformly charged inner insulating sphere with radius a and with charge density given...
Shown is a uniformly charged inner insulating sphere with radius a and with charge density given by ρ = ρ0(r3/a3). Outside of it is a conducting shell of inner radius b and outer radius c. This spherical shell also has double the charge of the inner non-conducting sphere. (So, if the inner sphere had charge “+Q”, the outer shell has charge “+2Q”.) The space between the sphere and the shell is empty. a) Describe/draw the charge distribution on the outer...
) A charge is spread out uniformly over a small non-conducting sphere. The small sphere shares...
) A charge is spread out uniformly over a small non-conducting sphere. The small sphere shares a center with a larger spherical shell with an inner radius of 6 ?? and an outer radius of 12 ??. a) Using Gauss’ Law, what is the magnitude of the charge on the nonconducting sphere if the field from the sphere is measured to be 8200 ?/? when 0.5 ?? from the center? b) What is the surface charge density on the inside...
5) A solid conducting sphere of radius 2.00 cm has a charge of 8.00uC. A conducting...
5) A solid conducting sphere of radius 2.00 cm has a charge of 8.00uC. A conducting spherical shell of inner radius 4.00 cm and outer radius 5.00 cm is concentric with the solid sphere and has a charge of -4.00uC. Find the electric field at a) r= 1.00 cm b) r= 3.00 cm c) r= 4.50 cm d) r= 7.00 cm from the center of this charge configuration.
A rubber ball with a radius of 10.0 cm is uniformly charged with a charge density...
A rubber ball with a radius of 10.0 cm is uniformly charged with a charge density of p . The electric field at position “X”, 5.00 cm from the center of the ball, is pointing toward the center of the sphere with a magnitude of 2 5.00 10^2 N/ C . What is the magnitude of the electric field 12.00 cm from the center of the sphere? Neglect any dielectric effect of the rubber
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT