Question

In: Physics

Physics 2 1. A 7.5 kg box that has an initial speed of 4.0 m /...

Physics 2

1. A 7.5 kg box that has an initial speed of 4.0 m / s slides along a rough board and reaches rest. Estimate the total change in the entropy of the universe. Assume that all objects are at room temperature (293 K)

2. What is the efficiency of a Carnot engine that is operating between a hot reserve at 800 K and a cold reserve at 400 K?

Solutions

Expert Solution

1) In this problem, the initial kinetic energy of the box is:KE

we know KE=1/2 ×M *V2 ......................(A)

where M=7.5 kg

and V= 4 .0 m/s

and T=293 K

put the all value on equation number (A)

KE=1/2 ×M *V2

  =1/2 ×7.5*(4)2  

=60 J

At the end of the process, the kinetic energy of the box is zero, and all that initial kinetic energy has been transferred to the surroundings as heat,

The entropy change of the universe is then given by:

  

  

  the total change in the entropy of the universe is =0.205 J/K

2)The formula of efficiency of Carnot engine is

   OR

  

Where TH Is a highest possible heat source =800k

and TL = the lowest heat sink temperature =400 K

Put all value on equation number (2)

  

​​​​​​​=0.5= 50%

the efficiency of a Carnot engine that is operating between a hot reserve at 800 K and a cold reserve at 400 K is =50%


Related Solutions

A box of mass 0.200 kg is given an initial speed of 2 m/s up a...
A box of mass 0.200 kg is given an initial speed of 2 m/s up a ramp with an angle of θ = 45° from the horizontal. The coefficients of friction between the box and ramp are μs = .7 and μk = .5 a) How far up the ramp does the box go before it comes to rest? b) Does it start to slide down the ramp after it gets to its maximum distance up the ramp?
A 7.50-kg box slides up a 25.0o ramp with an initial speed of 7.50 m/s. The...
A 7.50-kg box slides up a 25.0o ramp with an initial speed of 7.50 m/s. The coefficient of kinetic friction between the box and ramp is 0.333. You wish to calculate the distance the box will move up the ramp before coming to a stop using mechanical-energy (NOT force-motion or the work-kinetic energy.) a. Write the correct equation for solving the problem, and then fully justify its use. (Start by identifying the objects in the system [only the required objects]...
3) A 2 kg block is sliding at an initial speed of 10 m/s across a...
3) A 2 kg block is sliding at an initial speed of 10 m/s across a surface, encountering a constant friction force of 7 N. How much work is done on the block after it slides 22 cm? Answer:   Hint: Does the block gain or lose energy during this process? What sign does this imply for the work done on it? 4) How fast is the block moving after sliding 22 cm? Answer:   Hint: You can treat the block like...
An 800 kg car has an initial speed of 15 m/s measured at the bottom of...
An 800 kg car has an initial speed of 15 m/s measured at the bottom of a hill. Air resistance and other resistive forces cause a total of 10000 J of energy to be removed from the car as the car travels up the hill. The final speed of the car at the top of the hill is 5 m/s. What is the height of the hill?
Constants A 3.20 kg box is moving to the right with speed 8.00 m/s on a...
Constants A 3.20 kg box is moving to the right with speed 8.00 m/s on a horizontal, frictionless surface. At t = 0 a horizontal force is applied to the box. The force is directed to the left and has magnitude F(t)=(6.00 N/s2 )t2 What distance does the box move from its position at t=0 before its speed is reduced to zero? Express your answer with the appropriate units. If the force continues to be applied, what is the velocity...
The initial speed of a 2.17-kg box traveling up a plane inclined 37° to the horizontal...
The initial speed of a 2.17-kg box traveling up a plane inclined 37° to the horizontal is 3.23 m/s. The coefficient of kinetic friction between the box and the plane is 0.30. (a) How far along the incline does the box travel before coming to a stop? m (b) What is its speed when it has traveled half the distance found in Part (a)? m/s
The box moves at a constant speed. If the mass of the box is 6.4 kg,...
The box moves at a constant speed. If the mass of the box is 6.4 kg, it is pushed 3.6 m vertically upward, the coefficient of friction is 0.35, and the angle θ is 30.0°, determine the following. (a) the work done (in J) on the box by F (b) the work done (in J) on the box by the force of gravity J (c) the work done (in J) on the box by the normal force J (d) the...
A 8-g bullet moving horizontally with speed of 250 m/s strikes and remains in a 4.0-kg...
A 8-g bullet moving horizontally with speed of 250 m/s strikes and remains in a 4.0-kg block initially at rest on the edge of a table. The block, which is initially 80 cm above the floor, strikes the floor a horizontal distance from the base of table. What is the horizontal distance on the floor?
A 3.12-kg projectile is fired with an initial speed of 122 m/s at an angle of...
A 3.12-kg projectile is fired with an initial speed of 122 m/s at an angle of 31° with the horizontal. At the top of its trajectory, the projectile explodes into two fragments of masses 1.04 kg and 2.08 kg. At 3.51 s after the explosion, the 2.08-kg fragment lands on the ground directly below the point of explosion.
A block of mass M = 10.0 kg is given an initial speed v0 = 2.10...
A block of mass M = 10.0 kg is given an initial speed v0 = 2.10 m/s from height hi down a frictionless incline plane of angle θ = 75◦. After it reaches the bottom of the incline, it continues to slide on a horizontal surface of coefficient of kinetic friction µk = 0.15. After sliding a distance d = 1.8 m along the horizontal surface, the block moves at a speed v = 7.00 m/s. Magnitude of acceleration due...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT