In: Advanced Math
1) A)State the domains (note: [0,inf) for including 0, (0,inf) not include 0) of the following functions (cannot divide by 0 and | ||||||||||||
cannot square root negative). B) state which function below is linear? a)
|
A) a) g(x)=1-x, here 1-x can be evealuated for every real number x, so the domain is D= (-inf,inf)
b) h(x)=√(x-1). square root is note defined for negetive numbers. so h(x) is defined only when x-1 is non-negetive, i,e, x-1>=0
x-1>=0 ⇒ x>=1.
So the domain is [1, inf)
c)f(x)=-(1-x)/√(1-x)
a/b is defined only when b ≠ 0, i,e, the dinominator should be non-zero. So f(x) is defined only when √(1-x) ≠ 0 ⇒ x-1 ≠ 0 ⇒ x≠1 .
Also from (b) we have √(x-1) is defined only when x>=1.
So h(x) is deined for x>=1 and x≠1.
The domain is (1,inf)
Function Domain
a) g(x)=1-x (-inf, inf) = R- complete real line
b) h(x)=√(x-1) [1 , inf)
c) (x)=-(1-x)/√(1-x) (1 , inf)
B) A function f is linear if and only if the following conditions are satisied
1) f(x+y)=f(x)+f(y) and
2) f(cx)=cf(x)
a) g(x)=1-x.
g(1)=0, g(2) = 1, g(1+2)=g(3)=2
g(1)+g(2)=0+1=1
here g(1+2) ≠ g(1)+g(2). So g is not linear
b) h(x)=√(x-1)
h(2)=√(2-1) =√1 = 1
3*h(2) = 3
h(3*2)=h(8) = √7
here h(3*2) ≠ 3h(2). So h is not linear
c) f(x)=-(1-x)/√(1-x)
f(2)= 1
f(3)= 2/√2 = 1.414
f(2)+f(3)=2.414
f(2+3)=f(5)=4/√4 = 4/2 = 2
here f(2+3) ≠ f(2)+f(3). So f is not linear