Question

In: Physics

A fixed 17.1-cmcm-diameter wire coil is perpendicular to a magnetic field 0.70 TT pointing up. In...

A fixed 17.1-cmcm-diameter wire coil is perpendicular to a magnetic field 0.70 TT pointing up. In 0.16 ss , the field is changed to 0.34 TT pointing down. What is the average induced emf in the coil?

Solutions

Expert Solution


Related Solutions

The magnetic field perpendicular to a circular wire loop 7.7 cmcm in diameter is changed from...
The magnetic field perpendicular to a circular wire loop 7.7 cmcm in diameter is changed from +0.44 TT to -0.27 TT in 150 msms , where + means the field points away from an observer and - toward the observer. Calculate the induced emf.
You hold a wire coil so that the plane of the coil is perpendicular to a magnetic field vector B.
You hold a wire coil so that the plane of the coil is perpendicular to a magnetic field vector B. Vector Bis kept constant but the coil is rotated so that the magnetic field, vector B , is now in the plane of the coil. How will the magnetic flux through the coil change as the rotation occurs? Check all that apply. The flux is unchanged because the magnitude of vector B is constant. The flux increases because the angle...
An 1200-turn coil of wire that is 2.4 cm in diameter is in a magnetic field...
An 1200-turn coil of wire that is 2.4 cm in diameter is in a magnetic field that drops from 0.12 T to 0 TT in 10 ms . The axis of the coil is parallel to the field. part A) What is the emf of the coil? Express your answer in volts.
A 9.0-cmcm -long wire is pulled along a U-shaped conducting rail in a perpendicular magnetic field....
A 9.0-cmcm -long wire is pulled along a U-shaped conducting rail in a perpendicular magnetic field. The total resistance of the wire and rail is 0.31 ΩΩ . Pulling the wire with a force of 1.1 NN causes 3.5 WW of power to be dissipated in the circuit. Part A What is the speed of the wire when pulled with 1.1 N? Express your answer in meters per second Part B What is the strength of the magnetic field? Express...
A 20-cmcm-diameter circular loop of wire is placed in a 0.64-T magnetic field. a) When the...
A 20-cmcm-diameter circular loop of wire is placed in a 0.64-T magnetic field. a) When the plane of the loop is perpendicular to the field lines, what is the magnetic flux through the loop? Express your answer to two significant figures and include the appropriate units. b) The plane of the loop is rotated until it makes a 45  angle with the field lines. What is the angle in the equation ΦB = BAcos⁡θ for this situation? Express your answer using...
   A flat coil of wire is placed in a uniform magnetic field that is in the...
   A flat coil of wire is placed in a uniform magnetic field that is in the y direction. (i) The magnetic flux through the coil is maximum if the coil is (a) in the xy plane(b) in either the xy or the yz plane (c) in the xz plane (d) in any orientation, because it is constant. (ii) For what orientation is the flux zero? Choose from the same possibilities.
A magnetic field is perpendicular to the plane of a single-turn circular coil. The magnitude of...
A magnetic field is perpendicular to the plane of a single-turn circular coil. The magnitude of the field is changing, so that an emf of 0.25 V and a current of 2.5 A are induced in the coil. The wire is then re-formed into a single-turn square coil, which is used in the same magnetic field (again perpendicular to the plane of the coil and with a magnitude changing at the same rate). What (a) emf and (b) current are...
A magnetic field is perpendicular to the plane of a single-turn circular coil. The magnitude of...
A magnetic field is perpendicular to the plane of a single-turn circular coil. The magnitude of the field is changing, so that an emf of 0.81 V and a current of 3.8 A are induced in the coil. The wire is then re-formed into a single-turn square coil, which is used in the same magnetic field (again perpendicular to the plane of the coil and with a magnitude changing at the same rate). What (a) emf and (b) current are...
A coil of wire containing N turns is in an external magnetic field that is at...
A coil of wire containing N turns is in an external magnetic field that is at a LaTeX: 45^o45 o angle from the plane of the coil and is steadily changing. Under these circumstances, an emf V is induced in the coil. If both the rate of change of the magnetic field and the number of turns in the coil are now doubled (but nothing else changes), what will be the induced emf in the coil?
A magnetic field of 0.080 TT is in the y-direction. The velocity of wire segment SS...
A magnetic field of 0.080 TT is in the y-direction. The velocity of wire segment SS has a magnitude of 78 m/sm/s and components of 18 m/sm/s in the x-direction, 24 m/sm/s in the y-direction, and 72 m/sm/s in the z-direction. The segment has length 0.50 mm and is parallel to the z-axis as it moves. Part A Find the motional emf induced between the ends of the segment. Express your answer with the appropriate units. Part B What would...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT