In: Statistics and Probability
Data Set
Height | Weight | Age | Shoe Size | Waist Size | Pocket Change |
64 | 180 | 39 | 7 | 36 | 18 |
66 | 140 | 31 | 9 | 30 | 125 |
69 | 130 | 31 | 9 | 25 | 151 |
63 | 125 | 36 | 7 | 25 | 11 |
68 | 155 | 24 | 8 | 31 | 151 |
62 | 129 | 42 | 6 | 32 | 214 |
63 | 173 | 30 | 8 | 34 | 138 |
60 | 102 | 26 | 6 | 25 | 67 |
66 | 180 | 33 | 8 | 30 | 285 |
66 | 130 | 31 | 9 | 30 | 50 |
63 | 125 | 32 | 8 | 26 | 32 |
68 | 145 | 33 | 10 | 28 | 118 |
75 | 235 | 44 | 12 | 40 | 60 |
68 | 138 | 43 | 8 | 27 | 50 |
65 | 165 | 55 | 9 | 30 | 22 |
64 | 140 | 24 | 7 | 31 | 95 |
78 | 240 | 40 | 9 | 38 | 109 |
71 | 163 | 28 | 7 | 32 | 14 |
68 | 195 | 24 | 10 | 36 | 5 |
66 | 122 | 33 | 9 | 26 | 170 |
53 | 115 | 25 | 7 | 25 | 36 |
71 | 210 | 30 | 10 | 36 | 50 |
78 | 108 | 23 | 7 | 22 | 75 |
69 | 126 | 23 | 8 | 24 | 175 |
77 | 215 | 24 | 12 | 36 | 41 |
68 | 125 | 23 | 8 | 30 | 36 |
62 | 105 | 50 | 6 | 24 | 235 |
69 | 126 | 42 | 9 | 27 | 130 |
55 | 140 | 42 | 8 | 29 | 14 |
67 | 145 | 30 | 8 | 30 | 50 |
Given the population mean for weight at 191.00 pounds, but no population standard deviation, using t = X-bar - µ/est. σx̄, and alpha .01, perfom the following seven-step process and contstruct the appropriate confidence intervals. Please write it out (fill-in the blanks) as detailed below.,
Step 1: Ho: u _ ____
Ha : u _ ____
Step 2: Alpha level = ______
Step 3: Sampling distribution is ____________________
Step 4: Decision Rule—I will reject the Ho if the |_____| value
falls at or beyond
the |_____| of _____, otherwise I will fail to reject
Step 5: Calculation—\_zobs or tobs__/ = ____
Step 6: Summary—Since the |____| of ____ falls at or beyond the |____| of ____, I therefore _________________.
Step 7: Conclusion—Since _________________ Ho occurred, I conclude that __________________________ in mean height value.
And the confidence intervals:
Solution
Preparatory Work
Data
i |
xi (weight in lbs) |
1 |
180 |
2 |
140 |
3 |
130 |
4 |
125 |
5 |
155 |
6 |
129 |
7 |
173 |
8 |
102 |
9 |
180 |
10 |
130 |
11 |
125 |
12 |
145 |
13 |
235 |
14 |
138 |
15 |
165 |
16 |
140 |
17 |
240 |
18 |
163 |
19 |
195 |
20 |
122 |
21 |
115 |
22 |
210 |
23 |
108 |
24 |
126 |
25 |
215 |
26 |
125 |
27 |
105 |
28 |
126 |
29 |
140 |
30 |
145 |
Summary of Excel Calculations
n = |
30 |
µ0 = |
191 |
Xbar = |
150.9 |
s = |
37.49147 |
tcal = |
-5.85831 |
Given α = |
0.01 |
tcrit = |
2.756386 |
p-value |
2.35E-06 |
Now, to work out the answer,
Part (a)
Step 1: Ho: µ = µ0 = 191
Ha : µ ≠191
Step 2: Alpha level = 0.01
Step 3: Sampling distribution is t with 29 degrees of freedom
Step 4: Decision Rule: I will reject the Ho if the |tobs| value falls at or beyond
the upper 0.5% point of t29, otherwise I will fail to reject
Step 5: Calculation: tobs = - 5.858
Step 6: Summary: Since the | tobs | of 5.858 falls beyond the |tcrit| of 2.756, I therefore reject the Ho.
Step 7: Conclusion: Since I reject the Ho,when Ho occurred, I conclude that 191 lbs is not in mean weight value.
Part (b)
Confidence intervals:
Back-up Theory
100(1 - α) % Confidence Interval for μ, when σ is not known is: Xbar ± (tn- 1, α /2)s/√n where
Xbar = sample mean, tn – 1, α /2 = upper (α /2)% point of
t-distribution with (n - 1) degrees of freedom, s = sample standard deviation and n = sample size.
Thus, 99% (given α = 0.01) Confidence Interval for μ is: 150.9 ± (2.756 x 37.491)/√30
= [132.033, 169.707]
[Note that the above CI does not contain 191 and hence Ho is rejected]