Question

In: Math

1. Hallar dos vectores unitarios y ortogonales a 〈?, ?, ?〉 y 〈−?, ?, ?〉. 2....

1. Hallar dos vectores unitarios y ortogonales a 〈?, ?, ?〉 y 〈−?, ?, ?〉.

2. Hallar la ecuación vectorial y ecuaciones simétricas de la línea paralela a la línea que pasa por (−?, ?, ?)y es paralela a la línea ?? = ?? = ? + ?.

Solutions

Expert Solution

por lo tanto, la unidad de vectores ortogonales a ambos

(Therefore unit orthogonal vector to both)

      

Obtenemos otra unidad de vector ortogonal simplemente multiplicando el vector con -1

(We get another unit orthogonal vector by just multiplying the vector with -1)

ya que será paralelo al primer vector.

(as it will be parallel to first vector)

El segundo vector unitario es

(Second unit vector is)

2] líneas paralelas tienen proporciones de la misma dirección

(parallel lines have same direction ratios)

La línea dada tiene relaciones de dirección (1 / 2,3,1),si la ecuación de línea es 2x=y/3=z+1

(Given line has direction ratios (1/2,3,1),if the equation of line is 2x=y/3=z+1)

Por lo tanto, la línea requerida tiene relaciones de dirección (1 / 2,3.1)

(Therefore, required line has direction ratios (1/2,3.1))

La línea pasa por (-6,2,3). Entonces la ecuación de línea es

(The line passes through (-6,2,3). So equation of line is)

Gracias y haz tu voto.Y perdón por los errores en español que he traducido usando google

Thank you and do upvote and sorry for mistakes in spanish as i have translated using google


Related Solutions

y′ = t, y(0) = 1, solution: y(t) = 1+t2/2 y′ = 2(t + 1)y, y(0)...
y′ = t, y(0) = 1, solution: y(t) = 1+t2/2 y′ = 2(t + 1)y, y(0) = 1, solution: y(t) = et2+2t y′ = 5t4y, y(0) = 1, solution: y(t) = et5 y′ = t3/y2, y(0) = 1, solution: y(t) = (3t4/4 + 1)1/3 For the IVPs above, make a log-log plot of the error of Backward Euler and Implicit Trapezoidal Method, at t = 1 as a function of hwithh=0.1×2−k for0≤k≤5.
y′ = t, y(0) = 1, solution: y(t) = 1+t2/2 y′ = 2(t + 1)y, y(0)...
y′ = t, y(0) = 1, solution: y(t) = 1+t2/2 y′ = 2(t + 1)y, y(0) = 1, solution: y(t) = et2+2t y′ = 5t4y, y(0) = 1, solution: y(t) = et5 y′ = t3/y2, y(0) = 1, solution: y(t) = (3t4/4 + 1)1/3 For the IVPs above, make a log-log plot of the error of Explicit Trapezoidal Rule at t = 1 as a function ofhwithh=0.1×2−k for0≤k≤5.
x^2 y ′′ + xy′ + λy = 0 with y(1) = y(2) and y ′...
x^2 y ′′ + xy′ + λy = 0 with y(1) = y(2) and y ′ (1) = y ′ (2) Please find the eigenvalues and eigenfunctions and eigenfunction expansion of f(x) = 6.
Find the area of the region. 1) y=6x^2 and y= 8x-2x^2 2) y=1/2sin(pi x/6) and y=1/6x...
Find the area of the region. 1) y=6x^2 and y= 8x-2x^2 2) y=1/2sin(pi x/6) and y=1/6x 3) y=x^3-4x and y=5x
1. solve the IVP: xy''-y/x=lnx, on (0, inifnity), y(1)=-1, y'(1)=-2 2.solve the IVP: y''-y=(e^x)/sqrtx, y(1)=e, y'(1)=0...
1. solve the IVP: xy''-y/x=lnx, on (0, inifnity), y(1)=-1, y'(1)=-2 2.solve the IVP: y''-y=(e^x)/sqrtx, y(1)=e, y'(1)=0 3. Given that y1(x)=x is a solution of xy''-xy'+y=0 on (0, inifinity, solve the IVP: xy''-xy'+y=2 on(0,infinity), y(3)=2, y'(3)=1 14. solve the IVP: X'=( 1 2 3) X, X(0)=(0 ##################0 1 4####### -3/8 ##################0 0 1 ########1/4
Solve the initial value problem. y'=(y^2)+(2xy)+(x^2)-(1), y(0)=1
Solve the initial value problem. y'=(y^2)+(2xy)+(x^2)-(1), y(0)=1
a) Let y be the solution of the equation  y ′ = (y/x)+1+(y^2/x^2) satisfying the condition  y (...
a) Let y be the solution of the equation  y ′ = (y/x)+1+(y^2/x^2) satisfying the condition  y ( 1 ) = 0. Find the value of the function  f ( x ) = (y ( x ))/x at  x = e^(pi/4) . b) Let y be the solution of the equation  y ′ = (y/x) − (y^2/x^2) satisfying the condition  y ( 1 ) = 1. Find the value of the function  f ( x ) = x/(y(x)) at  x = e  . c) Let y be the solution...
Find the critical numbers of the function. 1. g(y) = (y-1)/(y^2-y+1) 2. h(t) = t^3/4 -...
Find the critical numbers of the function. 1. g(y) = (y-1)/(y^2-y+1) 2. h(t) = t^3/4 - 2t^1/4 3. F(x) = (x^4/5)*(x-4)^2 4. f(x) = 2cos(x)+sin^2(x)
y^ = 0.9 - 0.3x x: 2 5 1 4 y: 1 2 1    -4...
y^ = 0.9 - 0.3x x: 2 5 1 4 y: 1 2 1    -4 a. Compute the three sums of​ squares, SST,​ SSR, and​ SSE, using the defining formulas. SST SSR SSE b. Verify the regression​ identity, SST​ = SSR​ + SSE. Is this statement​ correct? c. Determine the value of r squared ​(Round to four decimal places.) d. Determine the percentage of variation in the observed values of the response variable that is explained by the regression....
y''+y=2t+1+(cos(t))^-2
y''+y=2t+1+(cos(t))^-2
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT