In: Finance
Consider a bond that pays annually an 8% coupon with 20 years to maturity. The percentage change in the price of the bond if its yield to maturity increases from 5% to 7% is closest to? Set your decimal places to 4 in your financial calculator.
a |
19.50% |
|
b |
24.22% |
|
c |
-24.22% |
|
d |
-19.50% |
Lets assume face value of bond be $ 100
Price of bond if YTM is 5%
= $ 8 / 1.051 + $ 8 / 1.052 + $ 8 / 1.053 + $ 8 / 1.054 + $ 8 / 1.055 + $ 8 / 1.056 + $ 8 / 1.057 + $ 8 / 1.058 + $ 8 / 1.059 + $ 8 / 1.0510 + $ 8 / 1.0511 + $ 8 / 1.0512 + $ 8 / 1.0513 + $ 8 / 1.0514 + $ 8 / 1.0515 + $ 8 / 1.0516 + $ 8 / 1.0517 + $ 8 / 1.0518 + $ 8 / 1.0519 + $ 108 / 1.0520
= $ 137.3866 Approximately
Price of bond if YTM is 7%
= $ 8 / 1.071 + $ 8 / 1.072 + $ 8 / 1.073 + $ 8 / 1.074 + $ 8 / 1.075 + $ 8 / 1.076 + $ 8 / 1.077 + $ 8 / 1.078 + $ 8 / 1.079 + $ 8 / 1.0710 + $ 8 / 1.0711 + $ 8 / 1.0712 + $ 8 / 1.0713 + $ 8 / 1.0714 + $ 8 / 1.0715 + $ 8 / 1.0716 + $ 8 / 1.0717 + $ 8 / 1.0718 + $ 8 / 1.0719 + $ 108 / 1.0720
= $ 110.5940 Approximately
So the % change in price of the bond is
= ( $ 110.5940 - $ 137.3866) / $ 137.3866
= - 0.1950 or - 19.50% Approximately
so the correct answer is option d i.e. - 19.50%
Feel free to ask in case of any query relating to this question