In: Statistics and Probability
6 Assume the car expert requested estimates of the mean number of days to sell for the Domestic cars with a margin of error of seven days and the mean number of days of Foreign cars with a margin of error of eight days. Using 98% confidence, how large should the sample sizes be for each?
7 Suppose a Domestic car has a list price of $30,000 and a Foreign car has a list price of $30,000. What is your estimate of the final selling price (based on the percent difference for the sale and list price) and number of days required to sell each of these cars?
Domestic Cars | Foreign Cars | ||||||
Car | List Price in K | Sale Price in K | Days to Sell | List Price in K | Sale Price in K | Days to Sell | |
1 | 6.1 | 4.4 | 36 | 83.1 | 78.5 | 101 | |
2 | 67.6 | 66.8 | 51 | 59.6 | 57.1 | 62 | |
3 | 14 | 13.4 | 87 | 37 | 32.5 | 63 | |
4 | 83.4 | 80.5 | 80 | 43.4 | 43.2 | 47 | |
5 | 40 | 35.4 | 38 | 16.3 | 15 | 93 | |
6 | 56 | 52 | 24 | 8.3 | 5.9 | 21 | |
7 | 71.2 | 68.7 | 27 | 29.2 | 27.5 | 107 | |
8 | 50.7 | 49.7 | 52 | 32.7 | 32.7 | 15 | |
9 | 4.9 | 4.3 | 74 | 23.9 | 23.5 | 12 | |
10 | 70.5 | 66.5 | 84 | 85.5 | 85.1 | 58 | |
11 | 58 | 56 | 30 | 19 | 16.3 | 96 | |
12 | 75 | 73.7 | 31 | 19 | 18.9 | 106 | |
13 | 2.8 | 1.1 | 88 | 80.8 | 77.4 | 50 | |
14 | 7.7 | 4 | 11 | 17.7 | 15.6 | 42 | |
15 | 20 | 16.2 | 20 | 71.4 | 70.4 | 75 | |
16 | 23 | 21.5 | 71 | 16.1 | 13.8 | 62 | |
17 | 6.2 | 6 | 88 | 49.2 | 45.2 | 91 | |
18 | 18 | 14 | 43 | 40 | 38 | 6 | |
19 | 97 | 93.2 | 95 | 32 | 29.2 | 52 | |
20 | 69.2 | 66.8 | 37 | 27.2 | 22.5 | 71 | |
21 | 63.5 | 60.7 | 13 | 85.5 | 82.8 | 106 | |
22 | 65 | 61.9 | 60 | 87.4 | 85.7 | 91 | |
23 | 9.9 | 7 | 24 | 58.9 | 56.9 | 83 | |
24 | 90.2 | 88.3 | 42 | 56.2 | 52.8 | 29 | |
25 | 56 | 55 | 91 | 13.5 | 10 | 76 | |
26 | 80 | 75.2 | 39 | 55.7 | 54.2 | 40 | |
27 | 58.7 | 58.3 | 58 | 75.7 | 74.6 | 47 | |
28 | 33.1 | 32.9 | 47 | 89.1 | 85.7 | 67 | |
29 | 31.5 | 28.7 | 86 | 3.5 | 3.2 | 106 | |
30 | 54.5 | 54.1 | 88 | 67.5 | 65.3 | 100 | |
31 | 22.4 | 17.8 | 30 | 41.4 | 40.1 | 10 | |
32 | 40.3 | 38.4 | 29 | 45.3 | 43.3 | 36 | |
33 | 27.2 | 22.6 | 34 | 87.2 | 85.1 | 61 | |
34 | 14.4 | 14.1 | 12 | 16.4 | 14.3 | 65 | |
35 | 5.6 | 1.5 | 86 | 32.6 | 29.1 | 25 | |
36 | 42.2 | 40.8 | 72 | 14.2 | 14.2 | 39 | |
37 | 9.5 | 6.2 | 69 | 60.5 | 59.1 | 79 | |
38 | 93.1 | 90.5 | 32 | 73.1 | 68.3 | 83 | |
39 | 10.7 | 7.3 | 15 | 48.7 | 44.7 | 65 | |
40 | 93.3 | 91.7 | 15 | 38.3 | 38.2 | 35 | |
41 | 50 | 49.1 | 19 | 6.6 | 4.3 | 6 | |
42 | 33.2 | 29.6 | 27 | 86.2 | 81.4 | 53 | |
43 | 67 | 60 | 18 | 5 | 4.6 | 108 | |
44 | 56 | 53.1 | 54 | 37 | 32.7 | 85 | |
45 | 49.5 | 48.2 | 37 | 23.5 | 21.2 | 32 | |
46 | 52.7 | 48.8 | 66 | 90.7 | 87.4 | 97 | |
47 | 41.1 | 39.7 | 78 | 84.1 | 83.8 | 16 | |
48 | 72.1 | 70.9 | 12 | 45.1 | 42.7 | 38 | |
49 | 50 | 46.9 | 84 | 51.7 | 49.9 | 53 | |
50 | 88 | 84.2 | 20 | 36 | 34.6 | 97 | |
51 | 11.8 | 11.3 | 20 | 66.8 | 65 | 45 | |
52 | 69.5 | 69 | 90 | 54.5 | 50.2 | 31 | |
53 | 63 | 62.6 | 35 | 33 | 33 | 44 | |
54 | 60 | 58.1 | 46 | 11.4 | 10.8 | 92 | |
55 | 66.7 | 66.1 | 47 | 59.7 | 57.9 | 49 | |
56 | 58 | 55.5 | 51 | 84.2 | 80.1 | 52 | |
57 | 67.2 | 62.7 | 96 | 48.2 | 43.4 | 101 | |
58 | 74.9 | 70.4 | 59 | 68.9 | 64.9 | 14 | |
59 | 71.4 | 70.2 | 14 | 60.4 | 59.9 | 98 | |
60 | 71.1 | 67.8 | 75 | 87.1 | 85.1 | 90 | |
61 | 54 | 54 | 52 | 68.3 | 66.4 | 61 | |
62 | 19.9 | 17.2 | 60 | 8.9 | 7.5 | 32 | |
63 | 49.5 | 48.6 | 56 | 39.5 | 39.3 | 48 | |
64 | 56.8 | 54.8 | 11 | 57.8 | 53.1 | 29 | |
65 | 74 | 71.3 | 71 | 59 | 57.5 | 98 | |
66 | 20.4 | 17 | 31 | 22.4 | 19.4 | 6 | |
67 | 34.5 | 32.5 | 40 | 78.5 | 77.3 | 6 | |
68 | 17.2 | 14.4 | 29 | 11.2 | 9.4 | 83 | |
69 | 45 | 42.5 | 72 | 86.2 | 82 | 79 | |
70 | 82 | 81 | 32 | 4 | 3.5 | 70 | |
71 | 40 | 39.3 | 21 | 22.6 | 21.1 | 38 | |
72 | 16 | 12.4 | 62 | 36 | 36 | 18 | |
73 | 25 | 20.1 | 72 | 88 | 87.1 | 26 | |
74 | 64.1 | 61.5 | 10 | 88.1 | 85.2 | 41 | |
75 | 39.5 | 35.4 | 71 | 66.5 | 61.8 | 100 | |
76 | 72 | 67.3 | 97 | 4.1 | 3.1 | 7 | |
77 | 13 | 10.4 | 80 | 22 | 20.6 | 11 | |
78 | 37.1 | 36.1 | 26 | 71.1 | 70.5 | 33 | |
79 | 67.7 | 62.7 | 29 | 36.7 | 33.5 | 42 | |
80 | 40 | 36.6 | 28 | 69.2 | 66.3 | 9 | |
81 | 55.9 | 52.8 | 71 | 14.9 | 12.6 | 94 | |
82 | 51 | 47.4 | 81 | 81 | 78.8 | 104 | |
83 | 50 | 45.4 | 41 | 46.9 | 44.3 | 25 | |
84 | 44.2 | 41 | 15 | 11.2 | 6.6 | 69 | |
85 | 12 | 9.8 | 31 | 7 | 5.3 | 66 | |
86 | 72 | 70 | 78 | 36 | 31.9 | 52 | |
87 | 51.6 | 46.6 | 84 | 49.6 | 46.8 | 39 | |
88 | 54.4 | 52.6 | 26 | 42.4 | 38.3 | 92 | |
89 | 44.5 | 42.5 | 92 | 4.5 | 4 | 46 | |
90 | 61.6 | 60.9 | 19 | 31.6 | 31 | 64 | |
91 | 34.1 | 33.1 | 91 | 57.1 | 53.3 | 38 | |
92 | 80 | 79 | 38 | 42 | 39 | 64 | |
93 | 61.9 | 61.1 | 85 | 71.9 | 71 | 11 | |
94 | 74.6 | 73.4 | 84 | 86.6 | 86.5 | 11 | |
95 | 17 | 14.5 | 90 | 90 | 87.2 | 6 | |
96 | 10.8 | 7.9 | 70 | 47.8 | 42.9 | 73 | |
97 | 44.7 | 43.8 | 61 | 52.7 | 52.6 | 66 | |
98 | 11.7 | 10.3 | 73 | 35.7 | 32 | 31 | |
99 | 97.9 | 95.9 | 92 | 44.9 | 43.3 | 24 | |
100 | 67.5 | 63 | 10 | 21.5 | 19.4 | 89 | |
101 | 64 | 61.9 | 43 | 84.3 | 83.2 | 31 | |
102 | 97.7 | 93.7 | 73 | 69.7 | 65.7 | 100 | |
103 | 8.9 | 6.5 | 87 | 37.9 | 37.9 | 43 | |
104 | 51.3 | 47.7 | 18 | 49.3 | 45.5 | 18 | |
105 | 56 | 53.1 | 47 | 82.7 | 82.5 | 67 | |
106 | 12.6 | 8.4 | 95 | 3.6 | 3.2 | 7 | |
107 | 42.6 | 38.7 | 73 | 53.6 | 48.9 | 87 | |
108 | 50 | 47.7 | 84 | 74.2 | 69.2 | 11 | |
109 | 25.7 | 24.8 | 38 | 56.7 | 53.2 | 50 | |
110 | 72.4 | 67.6 | 98 | 54.4 | 51 | 69 | |
111 | 20.7 | 18.3 | 16 | 38.7 | 34 | 28 | |
112 | 62.3 | 57.9 | 13 | 4.3 | 2.9 | 85 | |
113 | 41.4 | 37.4 | 61 | 19.4 | 15.9 | 7 | |
114 | 50 | 49 | 97 | 16.5 | 12.8 | 95 | |
115 | 77.9 | 76.7 | 84 | 41.9 | 41 | 52 | |
116 | 10 | 9.2 | 25 | 73 | 69.4 | 98 | |
117 | 80 | 76.1 | 44 | 56 | 55.9 | 68 | |
118 | 61.5 | 60 | 48 | 69.5 | 68.9 | 43 | |
119 | 61.1 | 58.3 | 73 | 36.1 | 32.4 | 85 | |
120 | 38.6 | 34.2 | 54 | 32.6 | 28 | 7 | |
121 | 73.9 | 68.9 | 39 | 85.9 | 80.9 | 63 | |
122 | 30 | 30 | 94 | 68.9 | 68.8 | 26 | |
123 | 56 | 51.3 | 17 | 81.3 | 78.6 | 53 | |
124 | 39 | 36.1 | 72 | 52 | 50.4 | 104 | |
125 | 7.4 | 3.5 | 81 | 60.4 | 58.2 | 67 | |
126 | 74.9 | 74.5 | 16 | 23.9 | 19.4 | 43 | |
127 | 40 | 37.9 | 43 | 59.6 | 55.8 | 28 | |
128 | 43 | 39 | 23 | 44.5 | 44.3 | 54 | |
129 | 28.8 | 24.6 | 67 | 90.8 | 88.8 | 67 | |
130 | 14.5 | 10.5 | 14 | 66.5 | 63.5 | 11 | |
131 | 10.8 | 9.9 | 59 | 60.8 | 56 | 19 | |
132 | 6.6 | 1.9 | 12 | 83.6 | 82.5 | 8 | |
133 | 12.6 | 10.7 | 51 | 35.6 | 33.7 | 41 | |
134 | 3.4 | 0.2 | 86 | 81.4 | 78.5 | 45 | |
135 | 40.6 | 40.6 | 30 | 8.6 | 3.7 | 12 | |
136 | 67 | 63.5 | 70 | 7.2 | 6.3 | 35 | |
137 | 33.6 | 32 | 97 | 80.6 | 75.7 | 44 | |
138 | 67 | 66 | 59 | 3.5 | 3.2 | 84 | |
139 | 14 | 9.5 | 94 | 52 | 49.4 | 24 | |
140 | 22.7 | 19.7 | 34 | 6.7 | 2.7 | 18 | |
141 | 69.6 | 65.6 | 26 | 54.6 | 49.6 | 65 | |
142 | 68.7 | 65.2 | 38 | 11.7 | 8.5 | 13 | |
143 | 70 | 68 | 95 | 84.7 | 82.7 | 83 | |
144 | 57 | 54 | 89 | 57.9 | 57.1 | 103 | |
145 | 56.6 | 54.6 | 89 | 22.6 | 18.3 | 97 | |
146 | 69.4 | 69.2 | 80 | 85.4 | 80.9 | 77 | |
147 | 81.7 | 77.3 | 86 | 72.7 | 70.8 | 22 | |
148 | 70 | 65.8 | 72 | 30.3 | 28.5 | 57 | |
149 | 39.3 | 37.2 | 52 | 10.3 | 6.2 | 108 | |
150 | 16.8 | 13.3 | 49 | 80.8 | 80.1 | 11 | |
151 | 65.3 | 62.5 | 19 | 64.3 | 59.6 | 100 | |
152 | 15.9 | 14 | 91 | 31.9 | 29 | 84 | |
153 | 57.5 | 54.8 | 72 | 70.5 | 66.5 | 45 | |
154 | 55.7 | 55 | 61 | 7.7 | 5.7 | 71 | |
155 | 67.3 | 63.5 | 39 | 20.3 | 16.5 | 54 | |
156 | 10 | 9.6 | 72 | 56 | 52.3 | 77 | |
157 | 96 | 94.1 | 81 | 6 | 2.1 | 46 | |
158 | 57.7 | 55.7 | 22 | 24.7 | 23.7 | 75 | |
159 | 15.7 | 15.2 | 77 | 59.7 | 55.4 | 35 | |
160 | 12.2 | 7.8 | 94 | 53.2 | 48.8 | 13 | |
161 | 56.1 | 52.5 | 58 | 48.1 | 47.8 | 24 | |
162 | 10.3 | 9.6 | 36 | 19.3 | 16.3 | 64 | |
163 | 58 | 54.7 | 98 | 6.3 | 3.5 | 61 | |
164 | 7.5 | 6.5 | 59 | 26.5 | 22 | 84 | |
165 | 14.4 | 12.8 | 62 | 44.4 | 43.7 | 59 | |
166 | 57.5 | 57.4 | 46 | 89.5 | 89.2 | 36 | |
167 | 40.1 | 39.7 | 68 | 69.1 | 67.5 | 49 | |
168 | 23.3 | 21 | 33 | 48.3 | 44.7 | 103 | |
169 | 59 | 57.9 | 53 | 89 | 84.4 | 108 | |
170 | 24.2 | 19.3 | 33 | 56.2 | 54.6 | 20 | |
171 | 62 | 59.2 | 22 | 30 | 25.1 | 67 | |
172 | 45 | 40.7 | 37 | 57.8 | 56.3 | 42 | |
173 | 42 | 42 | 33 | 70.4 | 68.5 | 16 | |
174 | 60 | 59.5 | 54 | 50.1 | 46.5 | 43 | |
175 | 77.8 | 75 | 32 | 18.8 | 15.9 | 63 | |
176 | 73 | 70 | 76 | 24 | 22.2 | 103 | |
177 | 13.4 | 12 | 53 | 38.4 | 35.5 | 16 | |
178 | 29 | 27.9 | 57 | 73.6 | 71.5 | 93 | |
179 | 97 | 92.7 | 31 | 25 | 24.7 | 60 | |
180 | 10 | 7.7 | 62 | 19 | 18.5 | 70 | |
181 | 21.7 | 19.5 | 13 | 49.7 | 49.6 | 47 | |
182 | 42.9 | 41.1 | 69 | 67.9 | 63.2 | 107 | |
183 | 23 | 20 | 42 | 28.6 | 28.3 | 50 | |
184 | 35 | 34.7 | 15 | 26.7 | 24.2 | 40 | |
185 | 3.4 | 3.3 | 34 | 51.4 | 47 | 25 | |
186 | 45 | 40.6 | 72 | 53.5 | 53.1 | 99 | |
187 | 7.9 | 4.6 | 50 | 6.9 | 2.2 | 23 | |
188 | 44 | 41.2 | 63 | 9.1 | 6.2 | 97 | |
189 | 8 | 3.1 | 36 | 70 | 68.3 | 83 | |
190 | 33 | 31.9 | 27 | 17 | 13 | 106 | |
191 | 2.6 | 2.4 | 63 | 57.6 | 55.6 | 87 | |
192 | 24 | 23 | 63 | 19.2 | 17.8 | 52 | |
193 | 23.6 | 19.7 | 30 | 34.6 | 32.2 | 46 | |
194 | 49.1 | 45.3 | 67 | 57.1 | 54.2 | 37 | |
195 | 1.5 | 1.3 | 69 | 80.5 | 80.4 | 98 | |
196 | 57.4 | 52.8 | 89 | 81.4 | 80.4 | 108 | |
197 | 60.9 | 59.8 | 56 | 69.9 | 69 | 88 | |
198 | 59.7 | 56.1 | 65 | 16.7 | 14.9 | 106 | |
199 | 1.8 | 1.7 | 20 | 78.8 | 75.4 | 7 | |
200 | 63.1 | 61.7 | 40 | 54.1 | 52.2 | 57 |
Answre 6)
a) for Domestic cars
Standard Deviation (s) = 26.10928 (calculated from data given in table) ; Margin of Error (z)= 7
Z value at 98% confidence level = 2.33
We know that z = 2.33 * s / Where n is the sample size
Therefore n = (2.33 * s / z )2 = (2.33 * 26.10928 / 7)2 = 75.5276 ~76
Sample size required for Domestic cars = 76
b) for Foreign cars
Deviation (s) = 30.99688 (calculated from data given in table) ; Margin of Error (z)= 8
Z value at 98% confidence level = 2.33
We know that z = 2.33 * s / Where n is the sample size
Therefore n = (2.33 * s / z )2 = (2.33 * 30.99688 / 8)2 = 81.50191 ~82
Sample size required for Foreign cars = 82
Answer 7) a) Mean selling price of Domestic cars = 42396.5
Mean list price of Domestic cars = 44854
percent differnce = 42396.5/44854 = 94.5211
Selling price of 30000 worth domestic car = 30000*94.5211 = 28356.33
Average days for seling the domestic car = 53.29 ~ 53 days
b ) Mean selling price of Foreign cars = 44830
Mean list price of Foreign cars = 47228
percent differnce = 44830/47228 = 94.9225
Selling price of 30000 worth foreign car = 30000*94.9225 = 28476.75
Average days for seling the foreign car = 56.26 ~ 56 days