Question

In: Computer Science

Do not use Pumping Lemma for Regular Expression to prove the following. You may think of...

Do not use Pumping Lemma for Regular Expression to prove the following. You may think of Closure Properties of Regular Languages

1. Fix an alphabet. For any string w with |w| ≥ 2, let middle(w) be the string obtained by removing the first and last symbols of w. That is, Given L, a regular language on Σ, prove that f1(L) is regular, where

f1(L) = {w : middle(w) ∈ L}

Solutions

Expert Solution

Let, suppose that the alphabet is a. = {a}

So , the language L is given by { , a ,aa, aaa, aaaa, ..........................................} which is a regular language.


Now,

f1(L) represents the language whose words are formed by taking each word from L (length>=2) and stripping its first and last letters.

The first two words in L { , a } are not candidates to form a word in f1(L) because length is < 2.

The following words after are all candidates:

{ aa, aaa, aaaa, ..........................................}.

Now we begin forming the language f1(L) by taking input words from above and applying (stripping) operation

{ , a ,aa, ..........................................}

Note aa --->  ,  aaa ----> a, aaaa ----> aa and so on

Since this is an infinite series , the words formed are already present and same as in langugae L. So both the languages are actually same .

Since L is already proved to be regular, hence f1(L) is also regular.


Related Solutions

Use the pumping lemma to prove that the following languages are not regular. (a)L2 = {y...
Use the pumping lemma to prove that the following languages are not regular. (a)L2 = {y = 10 × x | x and y are binary integers with no leading 0s, and y is two times x}. (The alphabet for this languages is {0, 1, ×, =}.) For example, 1010 = 10 × 101 is in L2, but 1010 = 10 × 1 is not. (b)Let Σ2 = {[ 0 0 ] , [ 0 1 ] , [ 1...
1. Pumping Lemma: a. Is the following language a regular language? (Use pumping lemma in proof.)...
1. Pumping Lemma: a. Is the following language a regular language? (Use pumping lemma in proof.) L = {0n 1n 2n | n ≥ 0} b. What is (i.e., define) the CFL pumping lemma?
Prove that the following language are NOT regular using the pumping lemma (20 pt.) ? =...
Prove that the following language are NOT regular using the pumping lemma (20 pt.) ? = {? ∈ {?, #}∗ | ? = ??#??# ... #?? ??? ? ≥ ?, ?? ∈ ?∗ ??? ????? ?, ??? ?? ≠?? ???????? ?≠?} Hint: choose a string ? ∈ ? that contains ? #’s.
(35 pt.) Prove that the following languages are not regular using the pumping lemma. (15pt.)?={?????? |?,?≥?}...
(35 pt.) Prove that the following languages are not regular using the pumping lemma. (15pt.)?={?????? |?,?≥?} (20 pt.) ? = {? ∈ {?, #}∗ | ? = ??#??# ... #?? ??? ? ≥ ?, ?? ∈ ?∗ ??? ????? ?, ??? ?? ≠?? ???????? ?≠?} Hint: choose a string ? ∈ ? that contains ? #’s.
Prove that {anbamba2m+n:n,m≥1} is not regular using pumping lemma
Prove that {anbamba2m+n:n,m≥1} is not regular using pumping lemma
Use the Pumping Lemma to show that the following languages are not regular. (a) {ai bj...
Use the Pumping Lemma to show that the following languages are not regular. (a) {ai bj | i > j} (b) {apaq | for all integers p and q where q is a prime number and p is not prime}.
Use the pumping lemma to show that the following languages are not regular. A a. A1={0^n...
Use the pumping lemma to show that the following languages are not regular. A a. A1={0^n 1^n 2^n | n≥0} b. A2 = {www | w ∈ {a,b}∗} A c. A3 ={a^2^n | n≥0} (Here, a^2^n means a string of 2^n a’s.) A ={a3n |n > 0 }
Use the pumping lemma to show that the following languages are not regular (c) (5 pts)...
Use the pumping lemma to show that the following languages are not regular (c) (5 pts) Let Σ = {0, 1, −, =} and SUB = {x = y − z | x, y, z are binary integers, and x is the result of the subtraction of z from y}. For example: 1 = 1 − 0, 10 = 11 − 01 are strings in SUB but not 1 = 1 − 1 or 11 = 11 − 10.
In pumping lemma I know how to prove 0^n 1^n is not regular but what changes...
In pumping lemma I know how to prove 0^n 1^n is not regular but what changes when I have 0^n 1^n 2^n (three variables). Do I need to check 6 variations of 0,1 and 2 instead of only 3 in 0^n 1^n? thanks.
Use Context-Free Pumping Lemma to prove that that following languages over the alphabet {'x', 'y', 'z'}...
Use Context-Free Pumping Lemma to prove that that following languages over the alphabet {'x', 'y', 'z'} are NOT context-free (a) {xjy2jzj : j > 0} (b) { xmynzk : m, n, k ≥ 0 and k = min(m,n) }
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT