Question

In: Physics

Varible Force A 1.8 kg particle moves along an x axis, being propelled by a variable...

Varible Force A 1.8 kg particle moves along an x axis, being propelled by a variable force directed along that axis. Its position is given by  x = 3.0 m + (4.0 m/s)t + ct2 - (2.2 m/s3)t3, with x in meters and t in seconds. The factor c is a constant. At t = 3.0 s, the force on the particle has a magnitude of 36 N and is in the negative direction of the axis. What is c?
in m/s2

Solutions

Expert Solution

The particle is moving along x-axis and mass of the particle is given

m = 1.8 kg

Position with respect to time

x = 3.0m + (4.0m/s)t +ct2 _ (2.2 m/s3)t3

The first derivative of position with respect to time is velocity and it's second deriative is acceleration.

So taking first derivative with respect to time ,

Taking second derivative ,

acceleration a =

At time t =3.0s , force is given by

F = -36N ( negative sign is because the force is acting in negative x axis opposite direction of the motin of the particle)

hence, ma = -36N

a = -36/m

a = -36/1.8

= -20m/s2 ----------------(3)

we have acceleration interms of time from double derivative of position, so putting t =3 in equation 2 gives

a = 2c - 2.2m/s3*6*3 s

= 2c - 39.6m/s2 ----------------(4)

equating (3) and (4) gives

2c -39.6m/s2 = -20m/s2

2c =( -20+39.6)m/s2

2c = 19.6 m/s2

c = (19.6/2)m/s2

= 9.8 m/s2

Hence c is 9.8 m/s2


Related Solutions

The only force acting on a 0.5 kg object as it moves along the x axis...
The only force acting on a 0.5 kg object as it moves along the x axis is given by         F = (4x i – 3x2y j ) N. where x and y in meter. The object starts moving with         velocity of 4 m/s. a) Find the work done by the force as the object moves from x = 1 to x = 3m.  b) What is the speed of the object at x = 3 m? please solve a &...
The only force acting on a 8 kg body as it moves along the x axis...
The only force acting on a 8 kg body as it moves along the x axis varies as shown in the figure. The velocity of the body at x = 0 is 8.0 m/s. What is the kinetic energy of the body at x =3.0 m? At what value of x will the body have a kinetic energy of 244.40 J? What is the maximum kinetic energy attained by the body between x = 0 and x = 5.0 m
A 0.150 kg particle moves along an x axis according to x(t) = −13.00 + 2.00t...
A 0.150 kg particle moves along an x axis according to x(t) = −13.00 + 2.00t + 3.50t2 − 2.50t3, with x in meters and t in seconds. In unit-vector notation, what is the net force acting on the particle at t = 3.55 s? F with arrow = ______ N
A small object with mass mm = 0.0900 kg moves along the +x-axis. The only force...
A small object with mass mm = 0.0900 kg moves along the +x-axis. The only force on the object is a conservative force that has the potential-energy function U(x)=−αx2+βx3 where α = 4.50 J/m2 and β = 0.300 J/m3. The object is released from rest at small x. 1-When the object is at x = 4.00 m, what is its speed? Express your answer with the appropriate units. 2-When the object is at x = 4.00 m, what is the...
Suppose a particle moves along the x-axis beginning at 0. It moves one integer step to...
Suppose a particle moves along the x-axis beginning at 0. It moves one integer step to the left or right with equal probability. a)What is the pdf of its position after three steps? b)What is the pdf of its position after three steps if the x-axis beginning at 1? c)What is the pdf of its position after two steps? d)What is the pdf of its position after two steps if the x-axis beginning at 1?
A particle moves along the x axis. It is initially at the position 0.250 m, moving...
A particle moves along the x axis. It is initially at the position 0.250 m, moving with velocity 0.070 m/s and acceleration -0.250 m/s2. Suppose it moves with constant acceleration for 3.90 s. Assume it moves with simple harmonic motion for 3.90 s and x = 0 is its equilibrium position. (a) Find its position. (b) Find its velocity at the end of this time interval.
A particle moves along the x axis. It is initially at the position 0.200 m, moving...
A particle moves along the x axis. It is initially at the position 0.200 m, moving with velocity 0.140 m/s and acceleration -0.410 m/s2. Suppose it moves with constant acceleration for 5.50 s. We take the same particle and give it the same initial conditions as before. Instead of having a constant acceleration, it oscillates in simple harmonic motion for 5.50 s around the equilibrium position x = 0. Hint: the following problems are very sensitive to rounding, and you...
Particle A moves along an axis in the laboratory with velocity V = 0.3c. Particle b...
Particle A moves along an axis in the laboratory with velocity V = 0.3c. Particle b moves with velocity of V = .9c along the direction of motion of particle A. What kinetic energy does the particle b measure for the particle A?
A 3kg particle moves along the X axis according to X(t) = 6t+3t2+2t3, where X is...
A 3kg particle moves along the X axis according to X(t) = 6t+3t2+2t3, where X is in meters and t is in seconds. What net force is acting on it at t = 3 s?
A particle, initially at rest, moves along the x-axis so that its acceleration at any time...
A particle, initially at rest, moves along the x-axis so that its acceleration at any time t ≥ 0 is given by a(t) = 12t2−4 . The position of the particle when t=1 is x(1)=3 . Write an expression for the position x(t) of the particle at any time t ≥ 0.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT