In: Finance
You are planning on buying $100,000 face value of Australian Commonwealth Government Bonds. The bonds mature on 15 February 2022 and have a coupon rate of 4.75%. If your purchase will settle on 27 April 2012, and the quoted yield for the bond is 3.92%, what is the cash price of the bonds to the nearest dollar?
| Price of bond | = | Present value of all coupon payments at yeild+present value of redemption price at yeild | ||||||||||
| Yeild | = | 3.92% or 0.0392 | ||||||||||
| Redemption value=face value=$100,000 | ||||||||||||
| Coupon=$100,000*4.75%=$4750 | ||||||||||||
| calculation of Time to redemption | ||||||||||||
| Period (in years) from 27th april 2012 to 15th feb 2013 | ||||||||||||
| = | 294days/365 days a year | |||||||||||
| = | 0.8055 year | |||||||||||
| period from 15 th feb 2013 to 15th feb 2022 | = | 9 years | ||||||||||
| Total time to redemption | = | 9years+0.8055year | ||||||||||
| = | 9.8055 years | |||||||||||
| Price of the bond | = | [coupon*PVAF(yeild,time)]+PVF(Yeild,time)*redemption value | ||||||||||
| = | [coupon*PVAF(3.92%,9.8055years)]+100,000*PVF(3.92%,9.8055yrs) | |||||||||||
| = | (4750*8.0129)+(100,000*0.6859) | |||||||||||
| = | 38061+68590 | |||||||||||
| = | $106,651 | |||||||||||
| Cash price of bond is $106,651 | ||||||||||||
| Please upvote the answer | ||||||||||||
| In case you have any doubt,please ask in the comments | ||||||||||||