In: Statistics and Probability
2.69 a, c
2 |
1 |
1 |
1 |
1 |
3 |
2 |
6 |
1 |
1 |
2 |
1 |
1 |
3 |
2 |
1 |
1 |
2 |
1 |
3 |
4 |
3 |
2 |
5 |
4 |
2 |
2 |
2 |
1 |
1 |
Refer to the data set above, with 30 values.
1)
Xi | (Xi-Xbar)^2 | |
2 | 0.0000 | |
1 | 1.0000 | |
1 | 1.0000 | |
1 | 1.0000 | |
1 | 1.0000 | |
4 | 4.0000 | |
4 | 4.0000 | |
1 | 1.0000 | |
1 | 1.0000 | |
3 | 1.0000 | |
1 | 1.0000 | |
3 | 1.0000 | |
2 | 0.0000 | |
3 | 1.0000 | |
2 | 0.0000 | |
1 | 1.0000 | |
1 | 1.0000 | |
2 | 0.0000 | |
2 | 0.0000 | |
2 | 0.0000 | |
1 | 1.0000 | |
2 | 0.0000 | |
2 | 0.0000 | |
1 | 1.0000 | |
6 | 16.0000 | |
1 | 1.0000 | |
1 | 1.0000 | |
3 | 1.0000 | |
5 | 9.0000 | |
2 | 0.0000 | |
sum | 60.0 | 50.0000 |
sum/n | 2 | |
sum/(n-1) | 1.7241 |
mean = sum(Xi)/n = 2.00
VARIANCE = sum(Xi-Xbar)^2/(n-1) = 1.7241
Sd = sqrt { (Xi-Xbar)^2/(n-1) }
sqrt(1.72414) = 1.31
range = max - min = 6-1 = 5
2) if the minimum and maximum values are dropped, the mean will be affected as it considers each observation in the data. the variance and standard deviation will be also be affected. the range is the difference between the maximun and minimum value, hence it will also be affected.
Xi | (Xi-Xbar)^2 | |
2 | 0.0115 | |
1 | 0.7972 | |
1 | 0.7972 | |
1 | 0.7972 | |
4 | 4.4401 | |
4 | 4.4401 | |
1 | 0.7972 | |
1 | 0.7972 | |
3 | 1.2258 | |
1 | 0.7972 | |
3 | 1.2258 | |
2 | 0.0115 | |
3 | 1.2258 | |
2 | 0.0115 | |
1 | 0.7972 | |
1 | 0.7972 | |
2 | 0.0115 | |
2 | 0.0115 | |
2 | 0.0115 | |
1 | 0.7972 | |
2 | 0.0115 | |
2 | 0.0115 | |
1 | 0.7972 | |
1 | 0.7972 | |
1 | 0.7972 | |
3 | 1.2258 | |
5 | 9.6543 | |
2 | 0.0115 | |
sum | 53.0 | 33.0957 |
sum/n | 1.892857 | |
sum/(n-1) | 1.2258 |
mean = sum(Xi)/n = 1.89
VARIANCE = sum(Xi-Xbar)^2/(n-1) = 1.2258
Sd = sqrt { (Xi-Xbar)^2/(n-1) }
sqrt(1.22576530612245)
1.11
range = max - min = 5-1 = 4