In: Finance
DB company just paid a dividend of $ D0 per share. It is estimated that the company's dividend will grow at a rate of 10 percent per year for the next 2 years, then the dividend is expected to grow at constant rate of 6 percent thereafter. You are also given that DB stock’s has beta of 1.2, and the expected market rate of return is 11% and the risk-free rate is 6%. Based on this, the current price of the DB stock is $28.48. What is the value of D0?
Value of D0 is $ 1.50
As per dividend discount model, current price of stock is the present value of future dividends. | ||||||||||
Step-1:Present value of dividends of first 2 years | ||||||||||
Year | Dividend | Discount factor | Present value | |||||||
a | b | c=1.12^-a | d=b*c | |||||||
1 | 1.10D0 | 0.892857 | 0.982143 | D0 | ||||||
2 | 1.21D0 | 0.797194 | 0.964605 | D0 | ||||||
Total | 1.946747 | D0 | ||||||||
Working: | ||||||||||
# 1 | As per Capital Asset Pricing model, | |||||||||
Required return | = | Risk free rate | + | Beta | * | (Market return - Risk free return) | ||||
= | 6% | + | 1.2 | * | (11%-6%) | |||||
= | 6% | + | 1.2 | * | 5% | |||||
= | 12.00% | |||||||||
# 2 | Dividend of year: | |||||||||
1 | D0*(1+0.10)^1 | = | 1.10 | D0 | ||||||
2 | D0*(1+0.10)^2 | = | 1.21 | D0 | ||||||
Step-2:Present value of dividend after year 2 | ||||||||||
Present value | = | D2*(1+g)/(K-g)*DF2 | Where, | |||||||
= | 17.04135 | D0 | D2 | 1.21 | D0 | |||||
g | 6% | |||||||||
K | 12% | |||||||||
DF2 | 0.797194 | |||||||||
Step-3:Sum of present value of dividends | ||||||||||
Sum of present value of dividends | = | 1.946747 | D0 | + | 17.04135 | D0 | ||||
= | 18.9881 | D0 | ||||||||
As pe dividend discount mode, current price of stock is the sum of present value of dividends. | ||||||||||
28.48 | = | 18.9881 | D0 | |||||||
D0 | = | $ 1.50 | ||||||||