Question

In: Advanced Math

Let V be a Hilbert space. Let f(x) = ∥x∥ for x ∈ V. Using the...

Let V be a Hilbert space. Let f(x) = ∥x∥ for x ∈ V. Using the definition of Frechet differentiation, show that ∇f(x) = x for all x ̸= 0. Furthermore, show that f(x) is not Frechet differentiable at x = 0.

Solutions

Expert Solution

Your feedback is very important .Share your feedback .


Related Solutions

(a)For what range in ν is the function f(x) = x ν in Hilbert space? (4)...
(a)For what range in ν is the function f(x) = x ν in Hilbert space? (4) (b) Why are observables represented by Hermitian operators? Explain fully. (3) (c) Why are determinate states of Q eigenfunctions of Qˆ? Explain fully. (4) (d) Comment on the essential properties of reality, orthogonality and completeness for both the cases of discrete and continuous spectra.
Let X be a compact space and let Y be a Hausdorff space. Let f ∶...
Let X be a compact space and let Y be a Hausdorff space. Let f ∶ X → Y be continuous. Show that the image of any closed set in X under f must also be closed in Y .
7. Show that the dual space H' of a Hilbert space H is a Hilbert space...
7. Show that the dual space H' of a Hilbert space H is a Hilbert space with inner product (', ')1 defined by (f .. fV)1 = (z, v)= (v, z), where f.(x) = (x, z), etc.
(3) Let V be a vector space over a field F. Suppose that a ? F,...
(3) Let V be a vector space over a field F. Suppose that a ? F, v ? V and av = 0. Prove that a = 0 or v = 0. (4) Prove that for any field F, F is a vector space over F. (5) Prove that the set V = {a0 + a1x + a2x 2 + a3x 3 | a0, a1, a2, a3 ? R} of polynomials of degree ? 3 is a vector space over...
Proof: Let S ⊆ V be a subset of a vector space V over F. We...
Proof: Let S ⊆ V be a subset of a vector space V over F. We have that S is linearly dependent if and only if there exist vectors v1, v2, . . . , vn ∈ S such that vi is a linear combination of v1, v2, . . . , vi−1, vi+1, . . . , vn for some 1 ≤ i ≤ n.
Let A be a bounded linear operator on Hilbert space. Show that if R(A) is closed,...
Let A be a bounded linear operator on Hilbert space. Show that if R(A) is closed, so is R(A*)
Let (X,d) be a metric space. The graph of f : X → R is the...
Let (X,d) be a metric space. The graph of f : X → R is the set {(x, y) E X X Rly = f(x)}. If X is connected and f is continuous, prove that the graph of f is also connected.
Let V be the vector space of all functions f : R → R. Consider the...
Let V be the vector space of all functions f : R → R. Consider the subspace W spanned by {sin(x), cos(x), e^x , e^−x}. The function T : W → W given by taking the derivative is a linear transformation a) B = {sin(x), cos(x), e^x , e^−x} is a basis for W. Find the matrix for T relative to B. b)Find all the eigenvalues of the matrix you found in the previous part and describe their eigenvectors. (One...
Prove that a projection Pe(x) is a linear operator on a Hilbert space, ,H and the...
Prove that a projection Pe(x) is a linear operator on a Hilbert space, ,H and the norm of projection Pe(x) =1 except for trivial case when e = {0}.
Let V be a vector space and let U and W be subspaces of V ....
Let V be a vector space and let U and W be subspaces of V . Show that the sum U + W = {u + w : u ∈ U and w ∈ W} is a subspace of V .
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT