Question

In: Advanced Math

Let X be a compact space and let Y be a Hausdorff space. Let f ∶...

Let X be a compact space and let Y be a Hausdorff space. Let f ∶ X → Y be continuous. Show that the image of any closed set in X under f must also be closed in Y .

Solutions

Expert Solution

if you are not satisfied with this answer don't thumb down please. Thanks.


Related Solutions

Problem 16.8 Let X and Y be compact metric spaces and let f: X → Y...
Problem 16.8 Let X and Y be compact metric spaces and let f: X → Y be a continuous onto map with the property that f-1[{y}] is connected for every y∈Y. Show that ifY is connected then so isX.
The curried version of let f (x,y,z) = (x,(y,z)) is let f (x,(y,z)) = (x,(y,z)) Just...
The curried version of let f (x,y,z) = (x,(y,z)) is let f (x,(y,z)) = (x,(y,z)) Just f (because f is already curried) let f x y z = (x,(y,z)) let f x y z = x (y z)
Let V be a Hilbert space. Let f(x) = ∥x∥ for x ∈ V. Using the...
Let V be a Hilbert space. Let f(x) = ∥x∥ for x ∈ V. Using the definition of Frechet differentiation, show that ∇f(x) = x for all x ̸= 0. Furthermore, show that f(x) is not Frechet differentiable at x = 0.
5. Let X, Y and Z be sets. Let f : X ! Y and g...
5. Let X, Y and Z be sets. Let f : X ! Y and g : Y ! Z functions. (a) (3 Pts.) Show that if g f is an injective function, then f is an injective function. (b) (2 Pts.) Find examples of sets X, Y and Z and functions f : X ! Y and g : Y ! Z such that g f is injective but g is not injective. (c) (3 Pts.) Show that if...
Let X and Y be T2-space. Prove that X*Y is also T2
Let X and Y be T2-space. Prove that X*Y is also T2
Let f(x, y) = − cos(x + y2 ) and let a be the point a...
Let f(x, y) = − cos(x + y2 ) and let a be the point a = ( π/2, 0). (a) Find the direction in which f increases most quickly at the point a. (b) Find the directional derivative Duf(a) of f at a in the direction u = (−5/13 , 12/13) . (c) Use Taylor’s formula to calculate a quadratic approximation to f at a.
Let f (x, y) = c, 0 ≤ y ≤ 4, y ≤ x ≤ y...
Let f (x, y) = c, 0 ≤ y ≤ 4, y ≤ x ≤ y + 1,  be the joint pdf of X and Y. (a) (3 pts) Find c and sketch the region for which f (x, y) > 0. (b) (3 pts) Find fX(x), the marginal pdf of X. (c) (3 pts) Find fY(y), the marginal pdf of Y. (d) (3 pts) Find P(X ≤ 3 − Y). (e) (4 pts) E(X) and Var(X). (f) (4 pts) E(Y)...
Let f ( x , y ) = x^ 2 + y ^3 + sin ⁡...
Let f ( x , y ) = x^ 2 + y ^3 + sin ⁡ ( x ^2 + y ^3 ). Determine the line integral of f ( x , y ) with respect to arc length over the unit circle centered at the origin (0, 0).
Let f(x,y) be a scalar function, and let F(x,y,z) be a vector field. Only one of...
Let f(x,y) be a scalar function, and let F(x,y,z) be a vector field. Only one of the following expressions is meaningful. Which one? a) grad f x div F b) div(curl(grad f)) c) div(div F) d) curl(div(grad f)) e) grad(curl F)
2 Let F be a field and let R = F[x, y] be the ring of...
2 Let F be a field and let R = F[x, y] be the ring of polynomials in two variables with coefficients in F. (a) Prove that ev(0,0) : F[x, y] → F p(x, y) → p(0, 0) is a surjective ring homomorphism. (b) Prove that ker ev(0,0) is equal to the ideal (x, y) = {xr(x, y) + ys(x, y) | r,s ∈ F[x, y]} (c) Use the first isomorphism theorem to prove that (x, y) ⊆ F[x, y]...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT