Question

In: Statistics and Probability

Show that, for any events E and F, P(E ∪ F) = P(E) + P(F) −...

Show that, for any events E and F, P(E ∪ F) = P(E) + P(F) − P(E ∩ F). Only use the probability axioms and indicate which axiom you use where

Solutions

Expert Solution

Solution :

This is the additional law of probability theorem .

P(E ∪ F) = P(E) + P(F) − P(E ∩ F).

Let E and F be the two events on sample space .

E U F can be expressed as the union of two disjoint events E and E' F

Therefore,

E U F = E U (E' F)

P(E U F) = P(E U (E' F)) = P(E) + P(E' F) ....................(1)

The event F can be expressed as a union of two disjoint events (E F ) and (E' F).

B = (E F) U (E' F)

P(B) = P(E F) U P(E' F)

We know that,

P(E' F) = P(F) - P(E F) ....................(2)

Plug the value of expression (2) in expression (1) we get,

P(E ∪ F) = P(E) + P(F) − P(E ∩ F)..


Related Solutions

Let E and F be independent events. Show that the events E and F care also...
Let E and F be independent events. Show that the events E and F care also independent. Hint: Start with P(E∩Fc) =P(E)−P(E∩F) and use the independence of E and F.
Suppose E and F are two mutually exclusive events in a sample space S with P(E)...
Suppose E and F are two mutually exclusive events in a sample space S with P(E) = 0.34 and P(F) = 0.46. Find the following probabilities. P(E ∪ F)    P(EC)    P(E ∩ F)    P((E ∪ F)C)    P(EC ∪ FC)      
If two events are independent how do we calculate the and probability, P(E and F), of...
If two events are independent how do we calculate the and probability, P(E and F), of the two events? (As a side note: this "and" probability, P(E and F), is called the joint probability of Events E and F. Likewise, the probability of an individual event, like P(E), is called the marginal probability of Event E.)
7. Let E be a finite extension of the field F of prime characteristic p. Show...
7. Let E be a finite extension of the field F of prime characteristic p. Show that the extension is separable if and only if E = F(Ep).
Show that for a dielectric material, (∂U/∂p)T= E-T(∂E/∂T)p where E and p are the electric field...
Show that for a dielectric material, (∂U/∂p)T= E-T(∂E/∂T)p where E and p are the electric field and dipole.
Suppose f : X → S and F ⊆ P(S). Show, f −1 (∪A∈F A) =...
Suppose f : X → S and F ⊆ P(S). Show, f −1 (∪A∈F A) = ∪A∈F f −1 (A) f −1 (∩A∈F A) = ∩A∈F f −1 (A) Show, if A, B ⊆ X, then f(A ∩ B) ⊆ f(A) ∩ f(B). Give an example, if possible, where strict inclusion holds. Show, if C ⊆ X, then f −1 (f(C)) ⊇ C. Give an example, if possible, where strict inclusion holds.
True or False? For any two events A and B, P(A∩ B) ≥ 1 − P(A∪...
True or False? For any two events A and B, P(A∩ B) ≥ 1 − P(A∪ B) True or False? For any two independent events A and B, P(A| B) = P(A| Bc ) Compute B(6, .2, 2)
show that for any n the matrix ring M_n(F) is simple over a field F. show...
show that for any n the matrix ring M_n(F) is simple over a field F. show your work. Do not use quotient rings!
Let p and q be propositions. (i) Show (p →q) ≡ (p ∧ ¬q) →F (ii.)...
Let p and q be propositions. (i) Show (p →q) ≡ (p ∧ ¬q) →F (ii.) Why does this equivalency allow us to use the proof by contradiction technique?
Let T∈ L(V), and let p ∈ P(F) be a polynomial. Show that if p(λ) is...
Let T∈ L(V), and let p ∈ P(F) be a polynomial. Show that if p(λ) is an eigenvalue of p(T), then λ is an eigenvalue of T. Under the additional assumption that V is a complex vector space, and conclude that {μ | λ an eigenvalue of p(T)} = {p(λ) | λan eigenvalue of T}.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT