Question

In: Math

P = 2xy + ? 2 + ??, ? = 2xy + ? 2 + ??,...

P = 2xy + ? 2 + ??, ? = 2xy + ? 2 + ??, ? = ?? olacak şekilde bir vektör alanı veriliyor. A (1,2,3) ve B (2,1,5) olmak üzere şayet varsa verilen vektör alanının potansiyel fonksiyonunu bulunuz. Bu vektör alanında ∫ ??? ? ? + ??? + ??? eğrisel integralinin değerini hesaplayınız.

find a potential function and calculate the integral

Solutions

Expert Solution


Related Solutions

Verify the green theorem for: P (x, y) = 2xy Q (x, y) = x +...
Verify the green theorem for: P (x, y) = 2xy Q (x, y) = x + y C is the curve formed by the line segments from (0,0) to (3,0), from (3,0) to (2,1) and from (2,1) to (0,0) For the line integral, you can solve through the parameterization analysis please
a.maximize and minimize −2xy on the ellipse x^2+4y^2=4 b.Determine whether or not the vector function is...
a.maximize and minimize −2xy on the ellipse x^2+4y^2=4 b.Determine whether or not the vector function is the gradient ∇f (x, y) of a function everywhere defined. If so, find all the functions with that gradient. (x^2+3y^2)i+(2xy+e^x)j
Solve the given initial-value problem. (x + y)2 dx + (2xy + x2 − 2) dy...
Solve the given initial-value problem. (x + y)2 dx + (2xy + x2 − 2) dy = 0,   y(1) = 1
Solve the initial value problem. y'=(y^2)+(2xy)+(x^2)-(1), y(0)=1
Solve the initial value problem. y'=(y^2)+(2xy)+(x^2)-(1), y(0)=1
Find the maximum and minimum distance from the origin to a point on the curve 9x^2−2xy+9y^2=8...
Find the maximum and minimum distance from the origin to a point on the curve 9x^2−2xy+9y^2=8 in the (x,y) plane. Maximum distance =   Minimum distance =
If p,p+2 are twin primes, prove 4((p−1)!+1)+p≡0 modp(p+2)
If p,p+2 are twin primes, prove 4((p−1)!+1)+p≡0 modp(p+2)
Find the global maximum and global minimum of the function f(x, y) = y^2 − 2xy...
Find the global maximum and global minimum of the function f(x, y) = y^2 − 2xy + 4y on the square 1 ≤ x ≤ 3, 0 ≤ y ≤ 2.
A. Use truth tables to verify these equivalences 1. p∨p ≡ p 2. p∧p ≡ p...
A. Use truth tables to verify these equivalences 1. p∨p ≡ p 2. p∧p ≡ p 3. p∨(p∧q) ≡ p 4. p∨q ≡¬p → q 5. p∧q ≡¬(p →¬q) 6. p ↔ q ≡ (p → q)∧(q → p) B. Determine the truth value of each of these statements. (Assume the domain of variables consist of all real numbers). 1. ∃x(x2 = 2) 2. ∃x(x + 2 = x) 3. ∀x(x2 + 2 > 0) 4. ∀x(x2 = x)
Let F(x, y, z)=2xy^2 +2yz^2 +2x^2z. (a) Find the directional derivative of F at the point...
Let F(x, y, z)=2xy^2 +2yz^2 +2x^2z. (a) Find the directional derivative of F at the point (−2, 1, −1) in the direction parallel to the line x = 3 + 4t, y = 2 − t, z = 3t. Answer: 58/√26 (b) Determine symmetric equations for the normal line to the level surface F(x, y, z)= −2 at the point (−1, 2, 1). Answer: x = −1 + 4t, y = 2 − 6t, z = 1 + 10t
Consider the vector field F(x, y) = <3 + 2xy, x2 − 3y 2> (b) Evaluate...
Consider the vector field F(x, y) = <3 + 2xy, x2 − 3y 2> (b) Evaluate integral (subscript c) F · dr, where C is the curve (e^t sin t, e^t cost) for 0 ≤ t ≤ π.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT