Question

In: Advanced Math

If p,p+2 are twin primes, prove 4((p−1)!+1)+p≡0 modp(p+2)

If p,p+2 are twin primes, prove 4((p−1)!+1)+p≡0 modp(p+2)

Solutions

Expert Solution


Related Solutions

2. Prove that |[0, 1]| = |(0, 1)|
2. Prove that |[0, 1]| = |(0, 1)|
A twin prime is a pair of primes (x, y), such that y = x +...
A twin prime is a pair of primes (x, y), such that y = x + 2. Construct a list of all twin primes less than 1000. The result should be stored in a list of numeric vectors called twin_primes, whose elements are the twin primes pairs. Print the length of the list twin_primes and print the 10th and the 15th elements of the list, i.e. twin_primes[[10]] and twin_primes[[15]]. Please use R-code.
Let p be an integer other than 0, ±1. (a) Prove that p is prime if...
Let p be an integer other than 0, ±1. (a) Prove that p is prime if and only if it has the property that whenever r and s are integers such that p = rs, then either r = ±1 or s = ±1. (b) Prove that p is prime if and only if it has the property that whenever b and c are integers such that p | bc, then either p | b or p | c.
Let V = {P(x) ∈ P10(R) : P'(−4) = 0 and P''(2) = 0}. If V=...
Let V = {P(x) ∈ P10(R) : P'(−4) = 0 and P''(2) = 0}. If V= M3×n(R), find n.
Consider the hypothesis test below. H 0:  p 1 -  p 2  0   H a:  p 1 -  p 2 >...
Consider the hypothesis test below. H 0:  p 1 -  p 2  0   H a:  p 1 -  p 2 > 0 The following results are for independent samples taken from the two populations. Sample 1 Sample 2 n1 = 100 n2 = 300 p1 = 0.24 p2 = 0.13 Use pooled estimator of p. What is the value of the test statistic (to 2 decimals)?   What is the  p-value (to 4 decimals)?   With   = .05, what is your hypothesis testing conclusion?
A= 1 2 4 0 1 -2 -1 0 1 2 0 3 8 1 4...
A= 1 2 4 0 1 -2 -1 0 1 2 0 3 8 1 4 . Let W denote the row space for A. (a) Find an orthonormal basis for W and for W⊥. (b) Compute projW⊥(1 1 1 1 1 ).
Prove: There are infinitely many primes of the form 6n − 1 (n is an integer).
Prove: There are infinitely many primes of the form 6n − 1 (n is an integer).
0. 0. 0. 0.0. 0. 0. 0. 0. 1. 1. 1. 1. 1. 1. 2. 2. 2. 3. 4.
0. 0. 0. 0.0. 0. 0. 0. 0.   1. 1. 1. 1. 1. 1. 2. 2. 2. 3.   4. A.)MEAN – B.)MEDIAN - C.)MODE - D.)STANDARD DEVIATION – E.)5 NUMBER SUMMARY – F.)BOX AND WHISKERS PLOT – G.) OUTLIERS-
0. 0. 0. 0.0. 0. 0. 0. 0. 1. 1. 1. 1. 1. 1. 2. 2. 2. 3. 4.
0. 0. 0. 0.0. 0. 0. 0. 0.   1. 1. 1. 1. 1. 1. 2. 2. 2. 3.   4. A.)5 NUMBER SUMMARY – B.)BOX AND WHISKERS PLOT – C.) OUTLIERS-
A:=<<0,-1,1>|<4,0,-2>|<2,-1,0>|<2,1,1>>; Matrix(3, 4, [[0, 4, 2, 2], [-1, 0, -1, 1], [1, -2, 0, 1]]) (a)...
A:=<<0,-1,1>|<4,0,-2>|<2,-1,0>|<2,1,1>>; Matrix(3, 4, [[0, 4, 2, 2], [-1, 0, -1, 1], [1, -2, 0, 1]]) (a) Use the concept of matrix Rank to argue, without performing ANY calculation, why the columns of this matrix canNOT be linerly independent. (b) Use Gauss-Jordan elimination method (you can use ReducedRowEchelonForm command) to identify a set B of linearly independent column vectors of A that span the column space of A. Express the column vectors of A that are not included in the set...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT