Question

In: Physics

In an L-R-C series circuit, 305 ΩΩ , 0.406 HH , and 5.92×10−8 FF . When...

In an L-R-C series circuit, 305 ΩΩ , 0.406 HH , and 5.92×10−8 FF . When the ac source operates at the resonance frequency of the circuit, the current amplitude is 0.510 AA .

- What is the amplitude of the voltage across the inductor?

- What is the amplitude of the voltage across the capacitor, What is the average power supplied by the source?

Solutions

Expert Solution


Related Solutions

In a series R-L-C circuit, R= 360 ohm , L= 0.410 H and C= 1.1*10^-2 micro...
In a series R-L-C circuit, R= 360 ohm , L= 0.410 H and C= 1.1*10^-2 micro F. 1.What is the resonance angular frequency of the circuit? 2. The capacitor can withstand a peak voltage of 550 V. If the voltage source operates at the resonance frequency, what maximum voltage amplitude can it have if the maximum capacitor voltage is not exceeded?
In a series oscillating RLC circuit, R = 16.4 Ω, C = 30.9 μF, L =...
In a series oscillating RLC circuit, R = 16.4 Ω, C = 30.9 μF, L = 8.80 mH, and E = Emsinωdt with Em = 44.8 V and ωd = 2900 rad/s. For time t = 0.434 ms find (a) the rate Pg at which energy is being supplied by the generator, (b) the rate PC at which the energy in the capacitor is changing, (c) the rate PL at which the energy in the inductor is changing, and (d)...
For the circuit 10 Vp AC with R=10 Ω, and L=8.2 mH (in series) compute XL...
For the circuit 10 Vp AC with R=10 Ω, and L=8.2 mH (in series) compute XL Z, iRMS, VR, VL for different frequencies ranging from f=20 Hz to f=100 Hz at 20 Hz intervals, and from then onwards, discrete values f= 200, 500, 1000, 2000 and 5000 Hz. Plot frequency (x-axis, logarithmic) vs. and frequency (x-axis, logarithmic). What happens to the circuit as frequency increases (which component is taking over?).
An L-R-C series circuit consists of a 2.40 μF capacitor, a 6.00 mH inductor, and a...
An L-R-C series circuit consists of a 2.40 μF capacitor, a 6.00 mH inductor, and a 60.0 Ω resistor connected across an ac source of voltage amplitude 10.0 V having variable frequency. Part A: At what frequency is the average power delivered to the circuit equal to 1/2*V_rms*I_rms? (ω = ____rad/s) Part B: Under the conditions of part (a), what is the average power delivered to each circuit element? (P_R, P_C, P_L = ____W) Part C: What is the maximum...
In the R-L circuit below, a resistor R (8.0 Ω) is connected in series to an...
In the R-L circuit below, a resistor R (8.0 Ω) is connected in series to an inductor L (24.0 mH) and a battery ε (12.0 V). When the circuit is closed, current grows with time. (a) What is the time constant of the circuit? (b) What is the current in the circuit at one time constant? (c) What is the maximum magnetic energy in the circuit? (d) At what time after closing the switch will the magnetic energy be 50%...
In a series oscillating RLC circuit, R =16.0 W, C =5.0 mF, L =20.0 mH, and...
In a series oscillating RLC circuit, R =16.0 W, C =5.0 mF, L =20.0 mH, and e=emsin (wt) with em =45.0 V and frequency of oscillation is 50 Hz. For time t= 0.4 s find (a) the rate PCat which the energy in the capacitor is changing, and (b) the rate PRat which energy is being dissipated in the resistor.
An L-R-C series circuit consists of a 60.0 Ω resistor, a 10.0 μF capacitor, a 3.60...
An L-R-C series circuit consists of a 60.0 Ω resistor, a 10.0 μF capacitor, a 3.60 mH inductor, and an ac voltage source of voltage amplitude 60.0 V operating at 1450 Hz . a.) Find the current amplitude across the inductor, the resistor, and the capacitor. b.) Find the voltage amplitudes across the inductor, the resistor, and the capacitor. c.) Why can the voltage amplitudes add up to more than 60.0 V ? d.) If the frequency is now doubled,...
We have a RLC series circuit. On this circuit V=100+j0 volts R=10ohm, L=85mH and C=1uF regarding...
We have a RLC series circuit. On this circuit V=100+j0 volts R=10ohm, L=85mH and C=1uF regarding to this values; * What should F0 has to be for making this circuit work at resonance position? * What is XL value with using F0 frequency? * What is XC value with using F0 frequency? * What is I value when the circuit is at resonance position? * What are voltages on VR, VXL, and VXC components when the circuit is on resonance...
1. Explain the time constant and its formula derivatives! for R-L circuit for R-C circuit for...
1. Explain the time constant and its formula derivatives! for R-L circuit for R-C circuit for R-L-C circuit give step by step how to get he formula,( not only the formula.) 2. Draw and explain the simple triangle wave generator circuit! 3. Find out and explain how the LPF and HPF circuits work with capacitors! 4. explain how the capacitors and inductors work as clearly as possible and give an example of the application
A circuit is consisted of an inductor L, a capacitor C, and a resistor R. It...
A circuit is consisted of an inductor L, a capacitor C, and a resistor R. It is driven by an AC voltage of the form ?0sin (??). At the steady state, find (a) the charge and current as a function of time (b) the maximum amplitude of the current and the corresponding resonance frequency (c) the average power at the current’s resonance frequency (c) the quality factor Q
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT