In: Physics
The study of cosmology reveals a number of fundamental forces (e.g. gravity) relevant to today’s understanding of the Universe. Identify and describe these forces in detail and explain how they relate to each other. In 2 pages (APA Style)
There are four forces in nature generally.
Gravitational force: It is the force between two body due to there mass. This force is always attractive. We can write it as let us consider two bodies having mass M1 and M2 at a distance r between them. Then this force between them can be written as
Weak nuclear force :
The weak force, also called the weak nuclear interaction, is responsible for particle decay. This is the literal change of one type of subatomic particle into another. So, for example, a neutrino that strays close to a neutron can turn the neutron into a proton while the neutrino becomes an electron.
Physicists describe this interaction through the exchange of force-carrying particles called bosons. Specific kinds of bosons are responsible for the weak force.
Electromagnetic forces:
The electromagnetic force, also called the Lorentz force, acts between charged particles, like negatively charged electrons and positively charged protons. Opposite charges attract one another, while like charges repel. The greater the charge, the greater the force. And much like gravity, this force can be felt from an infinite distance (albeit the force would be very, very small at that distance).
As its name indicates, the electromagnetic force consists of two parts: the electric force and the magnetic force. At first, physicists described these forces as separate from one another, but researchers later realized that the two are components of the same force.
Strong Nuclear forces: The strong interaction is very strong but very short-ranged. It is responsible for holding the nuclei of atoms together. It is basically attractive but can be effectively repulsive in some circumstances. The strong force is ‘carried’ by particles called gluons; that is, when two particles interact through the strong force, they do so by exchanging gluons. Thus, the quarks inside of the protons and neutrons are bound together by the exchange of the strong nuclear force.