In: Math
A sample of 11 circuits from a large normal population has a mean resistance of 2.20 ohms. We know from past testing that the population standard deviation is 0.35 ohms.
1. Determine a 95% confidence interval for the true mean resistance of the population.
2. In part 1 above, do you need any assumptions, if yes what, if no why.
1)
Level of Significance ,    α =   
0.05          
'   '   '      
   
z value=   z α/2=   1.9600   [Excel
formula =NORMSINV(α/2) ]      
          
       
Standard Error , SE = σ/√n =   0.3500   /
√   11   =   0.1055
margin of error, E=Z*SE =   1.9600  
*   0.1055   =   0.2068
          
       
confidence interval is       
           
Interval Lower Limit = x̅ - E =    2.20  
-   0.206833   =   1.993
Interval Upper Limit = x̅ + E =    2.20  
-   0.206833   =   2.407
95%   confidence interval is (  
1.99   < µ <   2.41  
)
2)
no, because population from which sample is taken is normally distributed.
and sample are taken randomly