Question

In: Physics

A nonconducting ring of radius of 11.6 cm is uniformly charged with a total positive charge...

A nonconducting ring of radius of 11.6 cm is uniformly charged with a total positive charge of 10.0 µC. The ring rotates at a constant angular speed 18.6 rad/s about an axis through its center, perpendicular to the plane of the ring. What is the magnitude of the magnetic field on the axis of the ring 5.00 cm from its center?
pT

Solutions

Expert Solution


Related Solutions

A uniformly charged thin ring has a radius 15.0 cm and has total charge +24.0 nC....
A uniformly charged thin ring has a radius 15.0 cm and has total charge +24.0 nC. An electron is placed on the ring's axis a distance 30.0 cm from the center of the ring and is constrained to stay onthe axis of the ring. The electron is then released from rest. a) Obtain the potential of a charged ring from an electric field. b) Calculate the force felt by the electron when it is placed 30 cm from its center....
A uniformly charged, thin ring has radius 15.5 cm and total charge +23.3 nC. An electron...
A uniformly charged, thin ring has radius 15.5 cm and total charge +23.3 nC. An electron is placed on the ring’s axis a distance 26.1 cm from the center of the ring and is constrained to stay on the axis of the ring. The electron is then released from rest. Find the speed of the electron when it reaches the center of the ring. (Give your answer in scientific notation using m/s as unit)
A rubber ball with a radius of 10.0 cm is uniformly charged with a charge density...
A rubber ball with a radius of 10.0 cm is uniformly charged with a charge density of p . The electric field at position “X”, 5.00 cm from the center of the ball, is pointing toward the center of the sphere with a magnitude of 2 5.00 10^2 N/ C . What is the magnitude of the electric field 12.00 cm from the center of the sphere? Neglect any dielectric effect of the rubber
A charge of 2.20 µC is uniformly distributed on a ring of radius 9.0 cm. Find...
A charge of 2.20 µC is uniformly distributed on a ring of radius 9.0 cm. Find the electric field strength on the axis at the following locations. (a) 1.2 cm from the center of the ring N/C (b) 3.9 cm from the center of the ring N/C (c) 4.0 m from the center of the ring N/C (d) Find the field strength at 4.0 m using the approximation that the ring is a point charge at the origin. N/C (e)...
A charge of 2.20 µC is uniformly distributed on a ring of radius 9.0 cm. Find...
A charge of 2.20 µC is uniformly distributed on a ring of radius 9.0 cm. Find the electric field strength on the axis at the following locations. (be careful calculating c and d the last post was wrong. please include e.) (a) 1.2 cm from the center of the ring   N/C (b) 3.9 cm from the center of the ring   N/C (c) 4.0 m from the center of the ring   N/C (d) Find the field strength at 4.0 m using...
A solid sphere of radius a is uniformly charged with a total charge Q > 0....
A solid sphere of radius a is uniformly charged with a total charge Q > 0. a. Use Gauss’s law to determine the electric field everywhere. b. Where is the magnitude of the electric field the largest? c. What is its value there? d. Find two distances from the centre of the sphere where the electric field has half of its maximum value.
A uniformly charged disk of radius 35.0 cm carries a charge density of 6.40 ✕ 10-3...
A uniformly charged disk of radius 35.0 cm carries a charge density of 6.40 ✕ 10-3 C/m2. Calculate the electric field on the axis of the disk at the following distances from the center of the disk. (a) 5.00 cm MN/C (b) 10.0 cm MN/C (c) 50.0 cm MN/C (d) 200 cm MN/C
A circular ring of radius R with a total charge 2Q uniformly distributed along its circumference...
A circular ring of radius R with a total charge 2Q uniformly distributed along its circumference lies in the x y plane with its center at the origin. (a) Find the electric field at a point with coordinates (0, 0, z0). Show all steps in your calculation. Don’t forget to represent the field in vector form - magnitude and direction! (b) Find the locations along the z axis where the electric field has its largest values (don’t forget that because...
A ring-shaped conductor with radius a = 2.90cm has a total positive charge Q = 0.130nC...
A ring-shaped conductor with radius a = 2.90cm has a total positive charge Q = 0.130nC uniformly distributed around it.(Figure 1) Part C A particle with a charge of ? 2.10?C is placed at the point P described in part A. What is the magnitude of the force exerted by the particle on the ring?
A ring-shaped conductor with radius a = 2.90cm has a total positive charge Q = 0.130nC...
A ring-shaped conductor with radius a = 2.90cm has a total positive charge Q = 0.130nC uniformly distributed around it.(Figure 1) Part C A particle with a charge of ? 2.10?C is placed at the point P described in part A. What is the magnitude of the force exerted by the particle on the ring?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT