In: Accounting
Regression Analysis Using Excel (Appendix). Walleye Company produces fishing reels. Management wants to estimate the cost of production equipment used to produce the reels. The company reported the following monthly cost data related to production equipment:
Reporting Period (Month) | Total Costs | Machine Hours |
January | $1,104,000 | 54,000 |
February | 720,000 | 30,000 |
March | 600,000 | 24,000 |
April | 1,320,000 | 108,000 |
May | 1,368,000 | 114,000 |
June | 744,000 | 36,000 |
July | 1,056,000 | 45,600 |
August | 1,092,000 | 57,600 |
September | 1,272,000 | 93,600 |
October | 1,152,000 | 61,200 |
November | 1,680,000 | 115,200 |
December | 1,176,000 | 64,800 |
Required:
SUMMARY OUTPUT | ||||||||
Regression Statistics | ||||||||
Multiple R | 0.921954088 | |||||||
R Square | 0.849999341 | |||||||
Adjusted R Square | 0.834999275 | |||||||
Standard Error | 123526.7057 | |||||||
Observations | 12 | |||||||
ANOVA | ||||||||
df | SS | MS | F | Significance F | ||||
Regression | 1 | 8.6466E+11 | 8.6466E+11 | 56.6663738 | 1.9983E-05 | |||
Residual | 10 | 1.5259E+11 | 1.5259E+10 | |||||
Total | 11 | 1.0173E+12 | ||||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% | |
Intercept | 534766.5519 | 83965.169 | 6.36890937 | 8.1512E-05 | 347680.497 | 721852.607 | 347680.497 | 721852.607 |
X Variable 1 | 8.540797732 | 1.13458157 | 7.52770708 | 1.9983E-05 | 6.01279245 | 11.068803 | 6.01279245 | 11.068803 |
RESIDUAL OUTPUT | ||||||||
Observation | Predicted Y | Residuals | Standard Residuals | |||||
1 | 995969.6295 | 108030.371 | 0.91723654 | |||||
2 | 790990.4839 | -70990.484 | -0.6027478 | |||||
3 | 739745.6975 | -139745.7 | -1.1865169 | |||||
4 | 1457172.707 | -137172.71 | -1.1646708 | |||||
5 | 1508417.493 | -140417.49 | -1.1922208 | |||||
6 | 842235.2703 | -98235.27 | -0.8340708 | |||||
7 | 924226.9285 | 131773.071 | 1.11882497 | |||||
8 | 1026716.501 | 65283.4987 | 0.55429237 | |||||
9 | 1334185.22 | -62185.22 | -0.5279863 | |||||
10 | 1057463.373 | 94536.6268 | 0.80266733 | |||||
11 | 1518666.451 | 161333.549 | 1.36980949 | |||||
12 | 1088210.245 | 87789.755 | 0.74538272 | |||||
b) | ||||||||
Coefficients | ||||||||
y-intercept | 5,34,767 | |||||||
x variable | 8.540797732 | |||||||
Y = $534,766.552 + 8.5408 x Machine hours | ||||||||
c) | ||||||||
Y = $534,766.552 + 8.5408 x 90000 | $ 13,03,438.35 |