Question

In: Physics

A spacecraft starts from rest, and makes a journey to a destination 134000 km from its...

A spacecraft starts from rest, and makes a journey to a destination 134000 km from its starting point. It does so by accelerating at a constant rate of 8.91 m/s^2 up to the midpoint of the journey, and then decelerates at the same constant rate of 8.91 m/s^2 for the second half of the journey, ending at rest. How long did the entire journey take?

A car drives around a circular track of diameter 75 m at a constant speed of 36.0 m/s. During the time it takes the car to travel 232 degrees around, what is the magnitude of the car s average acceleration?

Solutions

Expert Solution


Related Solutions

A car start from rest and travels towards a jeep. the jeep starts from rest at...
A car start from rest and travels towards a jeep. the jeep starts from rest at the same time with the car and travels toward the car. the car and jeep is 10 km apart. if the acceleration of the jeep and the car are 4 m/s^2 and 7 m/s^2 repectively, when and where will they meet?
A ski jumper starts from rest from point A at the top of a hill that...
A ski jumper starts from rest from point A at the top of a hill that is a height h1 above point B at the bottom of the hill. The skier and skis have a combined mass of 80 kg. The skier slides down the hill and then up a ramp and is launched into the air at point C that is a height of 10m above the ground. The skier reaches point C traveling at 42m/s. (a) Is the...
The elevator starts from rest at the first floor of the building and comes to a...
The elevator starts from rest at the first floor of the building and comes to a complete stop at the 6th floor. It can accelerate at 6 ft/s2 and then decelerate at 2 ft/s2 Determine the shortest time is takes to reach the 6th floor, which is 60 ft above the ground. Draw the v?t and s?t graphs for the motion of the elevator.
A hoop with a mass of 3.15 kg starts from rest at the top of a...
A hoop with a mass of 3.15 kg starts from rest at the top of a ramp. The ramp is 5.0 m long and 2.1 m high. What is the rotational kinetic energy of the hoop after it has rolled without slipping to the bottom? 16 J 32 J 22 J 78 J
A skier with a mass of 75kg starts from rest at the top of a slope...
A skier with a mass of 75kg starts from rest at the top of a slope which is 110m tall and skis to the bottom. Hint: you must use conservation of energy to solve both parts of this problem. a. What is the skier’s speed at the bottom of the slope if there is no friction? b. If the speed of the skier at the bottom of the slope is actually 20m/s, how much work is done by friction?
A skier starts from rest at the top of a hill that is inclined at 10.8°...
A skier starts from rest at the top of a hill that is inclined at 10.8° with respect to the horizontal. The hillside is 245 m long, and the coefficient of friction between snow and skis is 0.0750. At the bottom of the hill, the snow is level and the coefficient of friction is unchanged. How far does the skier glide along the horizontal portion of the snow before coming to rest?
A skier starts from rest at the top of a hill that is inclined at 10.9°...
A skier starts from rest at the top of a hill that is inclined at 10.9° with respect to the horizontal. The hillside is 190 m long, and the coefficient of friction between snow and skis is 0.0750. At the bottom of the hill, the snow is level and the coefficient of friction is unchanged. How far does the skier glide along the horizontal portion of the snow before coming to rest?
Suppose NASA wants to repair a malfunctioning spacecraft from a circular orbit at 1,050 km altitude...
Suppose NASA wants to repair a malfunctioning spacecraft from a circular orbit at 1,050 km altitude at the ISS located at 400 km altitude orbit. The Hohmann Transfer technique is used to bring the spacecraft from the higher orbit down to the lower orbit. What is the spacecraft velocity along the transfer elliptical orbit at 600 km altitude location? 7.1559 km/s B. 7.3254 km/s C. 7.4125 km/s D. 7.6686 km/s
1. A particle starts from rest, increasing its speed evenly, traveling a distance of 10.0 (m)...
1. A particle starts from rest, increasing its speed evenly, traveling a distance of 10.0 (m) in a time of 1.40 (s). From that moment it is kept at constant speed for 1.00 (s). Then its speed decreases to rest in a time of 2.80 (s). Calculate the total displacement of the particle. STEP BY STEP PLEASE
A vertical wheel with a diameter of 39 cm starts from rest and rotates with a...
A vertical wheel with a diameter of 39 cm starts from rest and rotates with a constant angular acceleration of 7.2 rad/s2 around a fixed axis through its center counterclockwise. a) Through what angle (in degrees) has the point initially at the bottom of the wheel traveled when t = 14 s? (Indicate the direction with the sign of your answer.) b) What is the point's total linear acceleration at this instant? (Enter the magnitude in m/s2.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT