In: Finance
OPtion 1
Particulars | Amount |
Cash Flow | $ 25,000.00 |
Int Rate | 4.500% |
Periods | 40 |
PV of Annuity = Cash Flow * [ 1 - [(1+r)^-n]] /r | ||
= $ 25000 * [ 1 - [(1+0.045)^-40]] /0.045 | ||
= $ 25000 * [ 1 - [(1.045)^-40]] /0.045 | ||
= $ 25000 * [ 1 - [0.1719]] /0.045 | ||
= $ 25000 * [0.8281]] /0.045 | ||
$ 4,60,039.61 |
OPtion 2
Particulars | Amount |
Cash Flow | $ 27,000.00 |
Int Rate | 4.500% |
Periods | 40 |
PV of Annuity = Cash Flow * [ 1 - [(1+r)^-n]] /r | ||
= $ 27000 * [ 1 - [(1+0.045)^-40]] /0.045 | ||
= $ 27000 * [ 1 - [(1.045)^-40]] /0.045 | ||
= $ 27000 * [ 1 - [0.1719]] /0.045 | ||
= $ 27000 * [0.8281]] /0.045 | ||
$ 4,96,842.78 |
Value after one year = $ 496842.78
Value Today = Value after one year * PVF(r%, n)
= $ 496842.78 * PVF(4.5%, 2)
= $ 496842.78* 0.9157
= $ 454973.8
OPtion 1 has to be selected as the present value is more in that