Question

In: Physics

A block of mass m = 3.50 kg is released from rest from point A and...

A block of mass m = 3.50 kg is released from rest from point A and slides on the frictionless track shown in the figure below. (Let ha = 5.20 m.)

(a) Determine the block's speed at points B and C

vB =  m/s
vC =  m/s


(b) Determine the net work done by the gravitational force on the block as it moves from point A to point C.
J

Solutions

Expert Solution

Here diagram is not given and heights of two points are not given hence i am taking that height values as followes to understand concept present behind the given problem.

  

Net work done by gravitational force from point A to C is taken since that points are not specified in problem .


Related Solutions

A block of mass M = 4.0kg is released from rest at point A as shown....
A block of mass M = 4.0kg is released from rest at point A as shown. Part AB of the track is frictionless and is one quarter of a circle of radius R=1.25m. The horizontal part of the track BC is rough with co-efficient of kinetic friction . The block comes to rest at C after moving a distance L = 6.25m. The block can be treated as a point particle. [a] What is the speed (in m/s) of M...
1.) In the figure, a block of mass m = 13 kg is released from rest...
1.) In the figure, a block of mass m = 13 kg is released from rest on a frictionless incline of angle θ = 30°. Below the block is a spring that can be compressed 3.7 cm by a force of 210 N. The block momentarily stops when it compresses the spring by 6.0 cm. (a) How far does the block move down the incline from its rest position to this stopping point? (b) What is the speed of the...
A 15.0 kg block is released from rest at point A in the figure below. The...
A 15.0 kg block is released from rest at point A in the figure below. The track is frictionless except for the portion between points B and C, which has a length of 6.00 m. The block travels down the track, hits a spring of force constant 2,300 N/m, and compresses the spring 0.200 m from its equilibrium position before coming to rest momentarily. Determine the coefficient of kinetic friction between the block and the rough surface between points B...
A 3 kg block (block A) is released from rest at the top of a 20...
A 3 kg block (block A) is released from rest at the top of a 20 m long frictionless ramp that is 3 m high. At the same time, an identical block (block B) is released next to the ramp so that it drops straight down the same 3 m. Find the values for each of the following for the blocks just before they reach ground level. (a) gravitational potential energy Block A____J Block B____J (b) kinetic energy Block a____...
A small rock with mass 0.30 kg k g is released from rest at point A...
A small rock with mass 0.30 kg k g is released from rest at point A A , which is at the top edge of a large, hemispherical bowl with radius R R = 0.48 m m (the figure (Figure 1)). Assume that the size of the rock is small compared to R R , so that the rock can be treated as a particle, and assume that the rock slides rather than rolls. The work done by friction on...
The figure shows a 100-kg block being released from rest from a height of 1.0 m.
The figure shows a 100-kg block being released from rest from a height of 1.0 m. It then takes it 0.90 s to reach the floor. What is the mass of the other block? The pulley has no appreciable mass or friction. A. 60 kg B. 48 kg C. 54 kg D. 42 kg             The figure shows a 100 - kg block being released from rest from a height of 1.0 m. It then takes it 0.90 s to reach...
A 10-kg block A is released from rest 2 m above the 5-kg plate P, which...
A 10-kg block A is released from rest 2 m above the 5-kg plate P, which can slide freely along the smooth vertical guides BC and DE. Determine the velocity of the block and plate just after impact. The coefficient of restitution between the block and the plate is e = 0.75. Also, find the maximum compression of the spring due to impact.The spring has an unstretched length of 600 mm The spring with the 5 kg plate are stationary...
A ball of mass M = 2 Kg is released at rest(V0=0) from the top of...
A ball of mass M = 2 Kg is released at rest(V0=0) from the top of a building at a height H=d= 125 m above the ground. There is no air resistance. Take g=10m/s2. The ball's final kinetic energy just before it hits the ground is ___ Joules 25,000 20 2,500 250 A car of mass M=1000 Kg moving initially at Vo= 30 m/s stops (Vf=0)after hitting a cement wall. The car spends a time  t=0.015 seconds from the moment it...
An object of mass 2 kg is released from rest from a platform 30 m above...
An object of mass 2 kg is released from rest from a platform 30 m above the water and allowed to fall under the influence of gravity. After the object strikes the water, it begins to sink with gravity pulling down and a buoyancy force pushing up. Assume that the force due to gravity (g = 9.81 m/s2) is constant, no change in momentum occurs on impact with the water, the buoyancy force is 1/2 the weight (weight=mg), and the...
a 0.5 long pendulum with a mass of 2 kg is released from rest at an...
a 0.5 long pendulum with a mass of 2 kg is released from rest at an angle of 20 degrees. Find: D. The arc length of the amplitude E. The maximum velocity at the bottom F. The maximum acceleration G. The period of oscillation H. The frequency of oscillation I. The angular frequency of oscillation J. The maximum tension in the string
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT