In: Statistics and Probability
A random sample of 130 observations results in 78 successes. [You may find it useful to reference the z table.]
a. Construct the an 95% confidence interval for the population proportion of successes. (Round intermediate calculations to at least 4 decimal places. Round "z" value and final answers to 3 decimal places.)
b. Construct the an 95% confidence interval for the population proportion of failures. (Round intermediate calculations to at least 4 decimal places. Round "z" value and final answers to 3 decimal places.)
Solution :
Given that,
(a)
Point estimate = sample proportion =
= x / n = 78 / 130 = 0.60
1 -
= 0.40
Z/2
= 1.96
Margin of error = E = Z
/ 2 *
((
* (1 -
)) / n)
= 1.96 * (((0.600
* 0.400) /130 )
= 0084
A 95% confidence interval for population proportion p is ,
- E < p <
+ E
0.600 - 0.084 < p < 0.600 + 0.084
0.516 < p < 0.684
(b)
Point estimate = sample proportion =
= x / n = 52 / 130 = 0.400
1 -
= 0.600
Z/2
= 1.96
Margin of error = E = Z
/ 2 *
((
* (1 -
)) / n)
= 1.96 * (((0.400
* 0.600) /130 )
= 0084
A 95% confidence interval for population proportion p is ,
- E < p <
+ E
0.400 - 0.084 < p < 0.400 + 0.084
0.316 < p < 0.484