In: Statistics and Probability
A random sample of 140 observations results in 119
successes.
a. Construct the a 95% confidence interval for the
population proportion of successes. (Round intermediate
calculations to at least 4 decimal places. Round "z" value
and final answers to 3 decimal places.)
b. Construct the a 95% confidence interval for the population proportion of failures. (Round intermediate calculations to at least 4 decimal places. Round "z" value and final answers to 3 decimal places.)
Solution :
Given that,
(a)
n = 140
x = 119
Point estimate = sample proportion = = x / n = 119 / 140 = 0.850
1 - = 1 - 0.850 = 0.150
At 95% confidence level the z is ,
= 1 - 95% = 1 - 0.95 = 0.05
/ 2 = 0.05 / 2 = 0.025
Z/2 = Z0.025 = 1.96
Margin of error = E = Z / 2 * (( * (1 - )) / n)
= 1.96 * (((0.850 * 0.150) / 140)
= 0.059
A 95% confidence interval for population proportion p is ,
- E < p < + E
0.850 - 0.059 < p < 0.850 + 0.059
0.791 < p < 0.909
The a 95% confidence interval for the population proportion of successes : (0.791 , 0.909)
(b)
n = 140
x = 21
Point estimate = sample proportion = = x / n = 21 / 140 = 0.150
1 - = 1 - 0.150 = 00.850
At 95% confidence level the z is ,
= 1 - 95% = 1 - 0.95 = 0.05
/ 2 = 0.05 / 2 = 0.025
Z/2 = Z0.025 = 1.96
Margin of error = E = Z / 2 * (( * (1 - )) / n)
= 1.96 * (((0.150 * 0.850) / 140)
= 0.059
A 95% confidence interval for population proportion p is ,
- E < p < + E
0.150 - 0.059 < p < 0.150 + 0.059
0.091 < p < 0.209
The a 95% confidence interval for the population proportion of failures : (0.091 , 0.209)