Question

In: Statistics and Probability

1.Consider the following hypotheses: H0: μ = 7,300 HA: μ ≠ 7,300 The population is normally...

1.Consider the following hypotheses: H0: μ = 7,300 HA: μ ≠ 7,300 The population is normally distributed with a population standard deviation of 700. Compute the value of the test statistic and the resulting p-value for each of the following sample results. For each sample, determine if you can "reject/do not reject" the null hypothesis at the 10% significance level. (You may find it useful to reference the appropriate table: z table or t table) (Negative values should be indicated by a minus sign. Round intermediate calculations to at least 4 decimal places. Round "test statistic" values to 2 decimal places and "p-value" to 4 decimal places.)

d. x−x− = 7,110; n = 33 Test Statistic? P-value?

2. It is advertised that the average braking distance for a small car traveling at 65 miles per hour equals 120 feet. A transportation researcher wants to determine if the statement made in the advertisement is false. She randomly test drives 34 small cars at 65 miles per hour and records the braking distance. The sample average braking distance is computed as 116 feet. Assume that the population standard deviation is 22 feet. (You may find it useful to reference the appropriate table: z table or t table)

b. Calculate the value of the test statistic and the p-value. (Negative value should be indicated by a minus sign. Round intermediate calculations to at least 4 decimal places and final answer to 2 decimal places.)
  

Solutions

Expert Solution

Solution :-

Given that ,

= 7300  

= 7110

= 700

n = 33

The null and alternative hypothesis is ,

H0 :   = 7300

Ha :    7300

This is the two tailed test .

Test statistic = z

= ( - ) / / n

= ( 7110 - 7300 ) / 700 / 33

= -1.56

The test statistic = -1.56

P- value = 2 * P ( Z < -1.56 )

= 2 * 0.0594

= 0.1188

P-value = 0.1188

( 2 )

= 120

= 116

= 22

n = 34

The null and alternative hypothesis is ,

H0 :   = 120

Ha :    120

This is the two tailed test .

Test statistic = z

= ( - ) / / n

= ( 116 - 120 ) / 22 / 34

= -1.06

The test statistic = -1.06

P - value = 2 * P ( Z < -1.06 )

= 2 * 0.1446

= 0.2892

P-value = 0.2892


Related Solutions

Consider the following hypotheses: H0: μ = 250 HA: μ ≠ 250 The population is normally...
Consider the following hypotheses: H0: μ = 250 HA: μ ≠ 250 The population is normally distributed with a population standard deviation of 62. (You may find it useful to reference the appropriate table: z table or t table) a-1. Calculate the value of the test statistic with x−x− = 277 and n = 75. (Round intermediate calculations to at least 4 decimal places and final answer to 2 decimal places.)    a-2. What is the conclusion at the 5%...
Consider the following hypotheses: H0: μ = 360 HA: μ ≠ 360 The population is normally...
Consider the following hypotheses: H0: μ = 360 HA: μ ≠ 360 The population is normally distributed with a population standard deviation of 73. (You may find it useful to reference the appropriate table: z table or t table) a-1. Calculate the value of the test statistic with x−x− = 389 and n = 80. (Round intermediate calculations to at least 4 decimal places and final answer to 2 decimal places.)    a-2. What is the conclusion at the 10%...
Consider the following hypotheses: H0: μ = 4,500 HA: μ ≠ 4,500 The population is normally...
Consider the following hypotheses: H0: μ = 4,500 HA: μ ≠ 4,500 The population is normally distributed with a population standard deviation of 700. Compute the value of the test statistic and the resulting p-value for each of the following sample results. For each sample, determine if you can "reject/do not reject" the null hypothesis at the 10% significance level. (You may find it useful to reference the appropriate table: z table or t table) (Negative values should be indicated...
Consider the following hypotheses: H0: μ = 1,800 HA: μ ≠ 1,800 The population is normally...
Consider the following hypotheses: H0: μ = 1,800 HA: μ ≠ 1,800 The population is normally distributed with a population standard deviation of 440. Compute the value of the test statistic and the resulting p-value for each of the following sample results. For each sample, determine if you can "reject/do not reject" the null hypothesis at the 10% significance level. (You may find it useful to reference the appropriate table: z table or t table) (Negative values should be indicated...
Consider the following hypotheses: H0: μ = 380 HA: μ ≠ 380 The population is normally...
Consider the following hypotheses: H0: μ = 380 HA: μ ≠ 380 The population is normally distributed with a population standard deviation of 77. (You may find it useful to reference the appropriate table: z table or t table) a-1. Calculate the value of the test statistic with x− = 390 and n = 45. (Round intermediate calculations to at least 4 decimal places and final answer to 2 decimal places.) a-2. What is the conclusion at the 10% significance...
Consider the following hypotheses: H0: μ = 450 HA: μ ≠ 450 The population is normally...
Consider the following hypotheses: H0: μ = 450 HA: μ ≠ 450 The population is normally distributed with a population standard deviation of 48. (You may find it useful to reference the appropriate table: z table or t table) a-1. Calculate the value of the test statistic with x−x− = 476 and n = 75. (Round intermediate calculations to at least 4 decimal places and final answer to 2 decimal places.)    a-2. What is the conclusion at the 5%...
Consider the following hypotheses: H0: μ = 380 HA: μ ≠ 380 The population is normally...
Consider the following hypotheses: H0: μ = 380 HA: μ ≠ 380 The population is normally distributed with a population standard deviation of 63. a-1. Calculate the value of the test statistic with x−x− = 393 and n = 95. (Round intermediate calculations to at least 4 decimal places and final answer to 2 decimal places.) a-2. What is the conclusion at the 10% significance level? a-3. Interpret the results at αα = 0.10. b-1. Calculate the value of the...
Consider the following hypotheses: H0: μ = 290 HA: μ ≠ 290 The population is normally...
Consider the following hypotheses: H0: μ = 290 HA: μ ≠ 290 The population is normally distributed with a population standard deviation of 79. (You may find it useful to reference the appropriate table: z table or t table) a-1. Calculate the value of the test statistic with x−x− = 303 and n = 50. (Round intermediate calculations to at least 4 decimal places and final answer to 2 decimal places.)    a-2. What is the conclusion at the 5%...
Consider the following hypotheses: H0: μ = 30 HA: μ ≠ 30 The population is normally...
Consider the following hypotheses: H0: μ = 30 HA: μ ≠ 30 The population is normally distributed. A sample produces the following observations: 33 26 29 35 31 35 31 At the 10% significance level, what is the conclusion? a) Reject H0 since the p-value is greater than α. b) Reject H0 since the p-value is smaller than α. c) Do not reject H0 since the p-value is greater than α. d) Do not reject H0 since the p-value is...
Consider the following hypotheses: H0: μ = 380 HA: μ ≠ 380 The population is normally...
Consider the following hypotheses: H0: μ = 380 HA: μ ≠ 380 The population is normally distributed with a population standard deviation of 77. (You may find it useful to reference the appropriate table: z table or t table) a-1. Calculate the value of the test statistic with x−x− = 390 and n = 45. (Round intermediate calculations to at least 4 decimal places and final answer to 2 decimal places.) a-2. What is the conclusion at the 10% significance...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT