Question

In: Math

Consider f(x) = 2 + 3x^2 − x^3

Consider f(x) = 2 + 3x2 − x3

a) Find local max and min values

b) Find intervals of concavity and infection points

Solutions

Expert Solution


Related Solutions

Consider the polynomial f(x) = 3x 3 + 5x 2 − 58x − 40. Using MATLAB....
Consider the polynomial f(x) = 3x 3 + 5x 2 − 58x − 40. Using MATLAB. Find the three roots of the polynomial, i.e, x where f(x) = 0, using Newton’s method. Report the number of iterations taken by each algorithm using a tolerance of 10−8 .
find f'(x) 1. f(x)=3sinx-secx+5 _______ 2. f(x)=e^xcot(3x) _______ 3. f(x)= cos^5(3x-1) _______
find f'(x) 1. f(x)=3sinx-secx+5 _______ 2. f(x)=e^xcot(3x) _______ 3. f(x)= cos^5(3x-1) _______
Find all functions f(x) with f′′(x) = 3x^3 − 2x^2 + x, f(0) = 1, and...
Find all functions f(x) with f′′(x) = 3x^3 − 2x^2 + x, f(0) = 1, and f(1) = 1.
Using MATLAB, Consider the polynomial f(x) = 3x^3 + 5x^2 − 58x − 40. Find the...
Using MATLAB, Consider the polynomial f(x) = 3x^3 + 5x^2 − 58x − 40. Find the three roots of the polynomial, i.e, x where f(x) = 0, using: (i) Bisection method, and (ii) Newton’s method. Report the number of iterations taken by each algorithm using a tolerance of 10^−8 .
For the function f(x) = x^2 +3x / 2x^2 + 6x +3 find the following, and...
For the function f(x) = x^2 +3x / 2x^2 + 6x +3 find the following, and use it to graph the function. Find: a)(2pts) Domain b)(2pts) Intercepts c)(2pts) Symmetry d) (2pts) Asymptotes e)(4pts) Intervals of Increase or decrease f) (2pts) Local maximum and local minimum values g)(4pts) Concavity and Points of inflection and h)(2pts) Sketch the curve
For the function f(x) = x^2 +3x / 2x^2 + 7x +3 find the following, and...
For the function f(x) = x^2 +3x / 2x^2 + 7x +3 find the following, and use it to graph the function. Find: a)(2pts) Domain b)(2pts) Intercepts c)(2pts) Symmetry d) (2pts) Asymptotes e)(4pts) Intervals of Increase or decrease f) (2pts) Local maximum and local minimum values g)(4pts) Concavity and Points of inflection and h)(2pts) Sketch the curve
consider the function f(x)=3x-5/sqrt x^2+1. given f'(x)=5x+3/(x^2+1)^3/2 and f''(x)=-10x^2-9x+5/(x^2+1)^5/2 a) find the local maximum and minimum...
consider the function f(x)=3x-5/sqrt x^2+1. given f'(x)=5x+3/(x^2+1)^3/2 and f''(x)=-10x^2-9x+5/(x^2+1)^5/2 a) find the local maximum and minimum values. Justify your answer using the first or second derivative test . round your answers to the nearest tenth as needed. b)find the intervals of concavity and any inflection points of f. Round to the nearest tenth as needed. c)graph f(x) and label each important part (domain, x- and y- intercepts, VA/HA, CN, Increasing/decreasing, local min/max values, intervals of concavity/ inflection points of f?
Suppose f is defined by f(x)=3x/(4+x^2), −1≤x<3. What is the domain of f? Find the intervals...
Suppose f is defined by f(x)=3x/(4+x^2), −1≤x<3. What is the domain of f? Find the intervals where f is positive and where f is negative. Does f have any horizontal or vertical asymptotes. If so, find them, and show your supporting calculations. If not, briefly explain why not. Compute f′ and use it to determine the intervals where f is increasing and the intervals where f is decreasing. Find the coordinates of the local extrema of f Make a rough...
f(x)= 9x^4-2x^3-36x^2+8x/3x^3+x^2-14 -Factor the numerator and denominator of f(x) completely. -Write the domain of f(x) in...
f(x)= 9x^4-2x^3-36x^2+8x/3x^3+x^2-14 -Factor the numerator and denominator of f(x) completely. -Write the domain of f(x) in interval notation. -Locate all hole(s), if any, and write them in the form of coordinate pairs. -Locate all vertical asymptote(s), if any, and give their equations in the form x = c. For each one, describe what happens to f(x) as x approaches c from the left(-), and as x approaches c from the right (+). -Locate the horizontal/slant asymptote, if any, and give...
Consider the optimization problem of the objective function f(x, y) = 3x 2 − 4y 2...
Consider the optimization problem of the objective function f(x, y) = 3x 2 − 4y 2 + xy − 5 subject to x − 2y + 7 = 0. 1. Write down the Lagrangian function and the first-order conditions. 1 mark 2. Determine the stationary point. 2 marks 3. Does the stationary point represent a maximum or a minimum? Justify your answer.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT