Question

In: Physics

Consider an object in uniform motion. Does this object have no interactions with its surroundings? Explain...

Consider an object in uniform motion. Does this object have no interactions with its surroundings? Explain and show your detailed work, using only words without any calculations or numbers. Use your own words. (Your answer should not be less than 4 lines)

Solutions

Expert Solution

If an object is in uniform motion then its velocity remains constant.since change in velocity is called acceleration ,so acceleration of object is zero

From Newton's second law of motion

F=ma we can say that net force acting on object is zero.

That is there is no net interactions of object with its surroundings. But individual interaction may be possible , but vector sum of all these individual interaction must balance each other so that net interaction of object with its surroundings must be zero.

Example:- when object is moving in crossed electric and magnetic field in veocity selector such tha its velocity v=E/B then net force acting on charge particle is zero that is charge particle is in uniform motion, but during motion it interact with electricfield(E) as well as magnetic field(B).

If you understand the example then it's ok.otherwise let me know in comment section.I will give you different example.


Related Solutions

Consider an object in uniform motion. Does this object have no interactions with its surroundings? Explain...
Consider an object in uniform motion. Does this object have no interactions with its surroundings? Explain and show your detailed work, using only words without any calculations or numbers. Use your own words. (Your answer should not be less than 4 lines). please make sure it's correct 100%
5. For an object moving in uniform circular motion, does the centripetal force do work on...
5. For an object moving in uniform circular motion, does the centripetal force do work on the object? A. No, because the force is always perpendicular to the object's displacement. B. No, because the displacement of the object is zero. C. Yes, because the object is moving. D. Yes, because work is force times distance and the object is moving from the force. 6. How can two collisions have the same change in momentum even though one collision took longer...
Consider the net radiant heat flux between an object and its surroundings as given by qrad,net...
Consider the net radiant heat flux between an object and its surroundings as given by qrad,net = ǫ σ ( T4 − T ∞4 ) ( 1 ) where ǫ is the emissivity, σ is the Stefan-Boltzmann constant (5.670374419×10−8 in W ), T is the object’s temperature and T is the surrounding (ambient) temperature. m2K4 ∞ 1-a) Linearize qrad,net in terms of ǫ, T, and T∞, use deviation variables and call this expression qL′ . 1-b) Compute the value for...
How does Newton's laws relate to uniform circular motion?
How does Newton's laws relate to uniform circular motion?
Consider the following descriptions of the vertical motion of an object subject only to the acceleration...
Consider the following descriptions of the vertical motion of an object subject only to the acceleration due to gravity.​ (Note: the acceleration due to gravity is 9.8 m divided by s squared​.) a. Find the velocity of the object for all relevant times. b. Find the position of the object for all relevant times. c. Find the time when the object reaches its highest point​ (What is the​ height?) d. Find the time when the object strikes the ground. A...
If I change the actual frequency of an object in circular motion, does this effect the...
If I change the actual frequency of an object in circular motion, does this effect the range of observed frequencies heard at a certain distance away from the moving object? For example, if I had an object moving in a circle with a frequency of 500 hz moving at a constant speed, would the difference between the highest and lowest observed frequencies be the same as if the actual frequency was 1000 Hz? If not, how would the range of...
Quantitatively (i.e. with equations) explain fictitious force in 1) linear motion and 2) uniform circular motion.
Quantitatively (i.e. with equations) explain fictitious force in 1) linear motion and 2) uniform circular motion.
Consider the one-dimensional motion of a particle of mass ? in a space where uniform gravitational...
Consider the one-dimensional motion of a particle of mass ? in a space where uniform gravitational acceleration ? exists. Take the vertical axis ?. Using Heisenberg's equation of motion, find the position-dependent operators ? ? and momentum arithmetic operator ?? in Heisenberg display that depend on time. In addition, calculate ??, ?0, ??, ?0.
8. Does the period of a simple pendulum depend on the amplitude of its motion? Explain.
8. Does the period of a simple pendulum depend on the amplitude of its motion? Explain.
Consider an object of mass m1 = 0.360 kg moving with a uniform speed of 5.40...
Consider an object of mass m1 = 0.360 kg moving with a uniform speed of 5.40 m/s on a frictionless surface. This object makes an elastic head-on collision with another object of mass m2 = 0.645 kg which is initially at rest. (a) Find the speed of m1 immediately after collision. m/s (b) Find the speed of m2 immediately after collision m/s
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT