Question

In: Physics

A8. For air with temperature and dew-point values given below in °C, find the LCL value...

A8. For air with temperature and dew-point values given below in °C, find the LCL value (km). T, Td T, Td a. 15, 12 g. 5, 4 b. 15, 10 h. 5, 0 c. 15, 8 i. 5, –5

Solutions

Expert Solution

The value of Lifted Condensation Level (LCL) was suggested by James Espy in his famous Espy's equation.

LCL value is given by,

where T is the air temperature and T_d is the dew point temperature.

a) Given,

Hence, LCL value is,

g) Given,

Hence, LCL value is,

b) Given,

Hence, LCL value is,

h) Given,

Hence, LCL value is,

c) Given,

Hence, LCL value is,

i) Given,

Hence, LCL value is,


Related Solutions

Air enters a counter-flow drier at 70˚C dry bulb temperature and 20˚C dew point temperature. Air...
Air enters a counter-flow drier at 70˚C dry bulb temperature and 20˚C dew point temperature. Air leaves the drier at 40˚C and 60% relative humidity. The initial moisture content of the product is 82% (wet basis). The amount of air moving through the drier is 2000kg of dry air per hour. The mass flow rate of the product is 10kg dry solid per hour. What is the final moisture content of the dried product in wet basis?
Air enters a counter-flow drier at 70˚C dry bulb temperature and 20˚C dew point temperature. Air...
Air enters a counter-flow drier at 70˚C dry bulb temperature and 20˚C dew point temperature. Air leaves the drier at 40˚C and 60% relative humidity. The initial moisture content of the product is 82% (wet basis). The amount of air moving through the drier is 2000kg of dry air per hour. The mass flow rate of the product is 10kg dry solid per hour. What is the final moisture content of the dried product in wet basis?
Air entering a dryer has a temperature (dry bulb) of 60°C and a dew point of...
Air entering a dryer has a temperature (dry bulb) of 60°C and a dew point of 26.7°C. Using the humidity chart, determine the actual humidity H, percentage humidity HP, humid heat cS and humid volume vH.
The dew point depression (Tdd) is defined as the difference between the temperature and dew point...
The dew point depression (Tdd) is defined as the difference between the temperature and dew point temperature at a given level: Tdd = T – Td. Using the expression given in lecture (slide 19 of lecture 4), plot on a graph the height of the LCL (Liding Condensation  level) (y-axis; units of km) vs. the surface dew point depression (x-axis; units of ˚C). Do this for dew point depression values ranging from 0˚C to 15˚C. You may code this or do...
Air at 25 C and 750mmHg has a dew point of 16C. If you want to...
Air at 25 C and 750mmHg has a dew point of 16C. If you want to remove 50% of the initial moisture in the air (at a constant pressure of 750 mmHg), to what temperature should you cool the air?
1000 m3 of moist air at 101 kPa and 25 °C with a dew point of...
1000 m3 of moist air at 101 kPa and 25 °C with a dew point of 11 °C enters a process. The air leaves the process at 98 kPa with a dew point of 58 °C. Assume ideal gases. (a) Draw and label a flowsheet for the process. b) What is the mole fraction of water in the air entering the process? Leaving the process? (c) How many moles of water are added to or removed from the 1000 m3...
Calculate the dew point temperature (to the nearest ºC); the corresponding vapor pressures of ethanol and...
Calculate the dew point temperature (to the nearest ºC); the corresponding vapor pressures of ethanol and methanol (units of mm Hg); and the equilibrium liquid molar compositions associated with a saturated vapor mixture containing 30% by mole ethanol and the balance methanol. Pressure of the system is 1 atm(abs).
When the air temperature is below 0 ?C, the water at the surface of a lake...
When the air temperature is below 0 ?C, the water at the surface of a lake freezes to form a sheet of ice. If the upper surface of an ice sheet 24.64cm thick is at -10.58?C and the bottom surface is at 0 ?C, calculate the time it will take to add 2.41mm to the thickness of this sheet.
Calculate the Y values corresponding to the X values given below. Find the critical values for...
Calculate the Y values corresponding to the X values given below. Find the critical values for X for the given polynomial by finding the X values among those given where the first derivative, dy/dx = 0 and/or X values where the second derivative, d¬2y/dx2 = 0. Be sure to indicate the sign (+ or -) of dy/dx and of d2y/dx2 tabled values. Using the first and second derivative tests with the information you have calculated, determine which X value(s) represent...
Calculate the Y values corresponding to the X values given below. Find the critical values for...
Calculate the Y values corresponding to the X values given below. Find the critical values for X for the given polynomial by finding the X values among those given where the first derivative, dy/dx = 0 and/or X values where the second derivative, d­2y/dx2 = 0.    Be sure to find the sign (+ or -) of dy/dx and of d2y/dx2 at all X values. Reference Lesson 13 and the text Appendix A (pp 694 – 698), as needed. Using the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT