In: Other
Consider an irreversible 2nd-order reaction (A + B → C) in a batch reactor with the initial molar ratio of ΘB=CB0/CA0. Find the relation between time (t) and conversion (XA). (Hint: You need to consider cases of both CA=CB and CA≠CB.)
Irreversible second order reaction in batch reactor.
A + B --> C
Initial concentration of A = Cao
Initial concentration of B = Cbo
Let us assume elementary reaction,
Rate of reaction of A (-rA) = kCaCb
-rA = kCaCb
-dCa/dt = kCaCb
Ca = Cao(1- Xa)
Cb = Cbo - CaoXa = Cao(Cbo/Cao - Xa) = Cao(M - Xa)
Case1 : Cao =/= Cbo, Taken M = Cbo/Cao
-dCao(1-Xa)/dt = kCao(1-Xa)Cao(M - Xa)
CaodXa/dt = kCao^2(1-Xa)(M - Xa)
dXa/dt = kCao(1-Xa)(M - Xa)
Taking partial fraction,
1/(1-Xa)(M-Xa) = A/(1-Xa) + B/(M - Xa)
1 = A(M - Xa) + B(1- Xa)
Put M = Xa,
B = 1/(1-M)
Put Xa = 1,
A = 1/(M-1)
1/(1-Xa)(M-Xa) = 1/(M - 1) * [ 1/(1-Xa) - 1/(M - Xa) ]
kCao*(M-1) *t =[ - ln(1-Xa) + ln(M - Xa) ]0Xa
ktCao(M-1) = ln[(M-Xa)/(1-Xa)] - lnM
ktCao(M-1) = ln[(M-Xa) /M(1-Xa) ]
this is the relation between Xa vs t.
case 2: Cao = Cbo , M = 1
dXa/dt = kCao(1-Xa)(1- Xa)
ktCao = [ 1/(1-Xa)]0Xa
ktCao = [ 1/(1- Xa) - 1]
ktCao = Xa/(1-Xa)
when Cao = Cbo then,
ktCao = Xa/(1-Xa)
this is the relation between t vs Xa.