Question

In: Economics

An individual consumer’s utility function and the budget constraint are described below. (ch. 5). U =...

An individual consumer’s utility function and the budget constraint are described below. (ch. 5). U = x1x2 s.t. m = p1x1 + p2x2 where, m = $100, p1 = $5, and p2 = $2. (i) Find the marginal rate of substitution between x1 and x2. [Show your work] (ii) Find the slope of the budget constraint. [Show your work] (iii) Given the answers to (i) and (ii), find the optimal amount of each good, x⇤ 1 and x⇤ 2. [Show your work] (iv) Interpret the meaning of the answer you found in (iii).

Solutions

Expert Solution


Related Solutions

Suppose an individual has the following utility function: U(X,Y) = 2XY. Draw the budget constraint when...
Suppose an individual has the following utility function: U(X,Y) = 2XY. Draw the budget constraint when the price of each unit of X and Y are 5 and 4, and income is 120. Find the choice that maximizes utility.
A consumer’s utility function is U = logx + logy2 , where and y are two...
A consumer’s utility function is U = logx + logy2 , where and y are two consumption goods. The price of x is $2.00 per unit and the price of y $5.00 per unit. Her budget is $1000. Solve her utility maximization problem and find her optimal consumption of x and y. Will your answers change if the consumer’s utility function is U = logxy2 instead – why or why not?
1. Consumer’s utility function is: U (X,Y) = 10X + Y. Consumer’s income M is 40...
1. Consumer’s utility function is: U (X,Y) = 10X + Y. Consumer’s income M is 40 euros, the price per unit of good X (i.e. Px ) is 5 euros and the price per unit of good Y (i.e. Py) is 1 euro. a) What is the marginal utility of good X (MUx) for the consumer? b) What is the marginal utility of good Y (MUy) for the consumer? How do I calculate these?
Suppose that a consumer’s utility function is U(x, y) = xy . The marginal utilities for...
Suppose that a consumer’s utility function is U(x, y) = xy . The marginal utilities for this utility function are MUx= y and MUy= x. The price of y is Py = 1. The price of x is originally Px = 9 and it then falls to Px = 4. The consumer’s income is  I = 72. (15 points) What x-y combination (xA*, yA*) maximizes utility in the original situation where Px = 9? Why? (15 points) What x-y combination (xC*,...
The consumer’s utility function is U(a,b) = ab2, where a denotes the quantity of good A...
The consumer’s utility function is U(a,b) = ab2, where a denotes the quantity of good A that the consumer consumes and b denotes the quantity of good B that the consumer consumes. The price per unit of good A is 4 Euros and the price per unit of good B is 8 Euros. Consumer’s income is 120 Euros. a) Find the marginal utility of good A and the marginal utility of good B b) Find the optimal quantity of good...
Assume a consumer’s utility function is U = √q1 + 2√q2 and her total income is...
Assume a consumer’s utility function is U = √q1 + 2√q2 and her total income is $90. The price of both good 1 and good 2 is $1. (a) (5 points) What is the bundle that maximizes this consumer’s utility? What is the consumer’s utility level at that point? (b) (5 points) Suppose that the price of good 1 drops to $0.50. What is the new bundle that maximizes this consumer’s utility? What is the consumer’s utility at this point?...
Suppose that an individual has a utility function of the form U = Y½ where U...
Suppose that an individual has a utility function of the form U = Y½ where U is utility and Y is income.                        a)   Calculate the utility level for Y values of $10,000, $40,000, $90,000, $160,000, and $250,000 and then plot the individual’s total utility function.                         b)   This individual is currently earning $90,000 but has a 50-50 chance of earning either $40,000 or $160,000 in a new job.                               i)   Calculate the expected income and utility from the new...
Assume an individual has a utility function of this form U(C, L) = 40 + 5(CxL)...
Assume an individual has a utility function of this form U(C, L) = 40 + 5(CxL) This utility function implies that the individual’s marginal utility of leisure is 5C and her marginal utility of consumption is 5L. The individual has an endowment of V=$40 in non-labour income and T = 18 hours to either work (h) or use for leisure (L). Assume that the price of each unit of consumption good p=$2 and the wage rate for each hour of...
Consider a consumer with the Utility function: U = C^1/5 O^ 4/5 and facing a budget...
Consider a consumer with the Utility function: U = C^1/5 O^ 4/5 and facing a budget constraint: M ≥ PcC +PoO Note: For this utility function MUC = (1/5)C^-4/5 O^ 4/5 and MUo = (4/5)C^1/5 O^ -1/5 Where C denotes the consumption of corn, and O denotes the consumption of other goods. A) For corn, characterize the income elasticity of demand, the price elasticity of demand, the cross price elasticity of demand and explain what each represents. (You do not...
Consider a consumer with the Utility function: U = C^1/5 O^ 4/5 and facing a budget...
Consider a consumer with the Utility function: U = C^1/5 O^ 4/5 and facing a budget constraint: M ≥ PcC +PoO Note: For this utility function MUC = (1/5)C^-4/5 O^ 4/5 and MUo = (4/5)C^1/5 O^ -1/5 Where C denotes the consumption of corn, and O denotes the consumption of other goods. A) Derive the Marshallian demand functions for C and O using the equilibrium conditions for an interior solution. B) Graph and fully label the Demand Curve for corn...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT