Question

In: Math

A Mission college administrator claims the population mean for student’s commute time is 30 minutes. A...

A Mission college administrator claims the population mean for student’s commute time is 30 minutes. A sample of 144 Mission College students shows a sample mean commute time = 32 minutes with sample standard deviation s = 12 minutes. Can you show at 99% confidence that the administrator’s claim is wrong? Before doing the problem, you must show that the problem meets the requirements for performing the test. Be sure to show your null and alternate hypothesis, show your test statistic and critical region, and state your conclusion clearly: could the administrator’s claim be true?   YES or   NO

Please show steps in Ti84 calculator, if applicabl

Solutions

Expert Solution

Let denotes the average commute time.

Conclusion : There is sufficient evidence to accept the administrator’s claim that the population mean for student’s commute time is 30 minutes at 99% confidence level r at 1% significance level.

To compute P-value in TI 84 : 1 - tcdf(E-99, 2, 143)

To compute critical value in TI 84 : invT(0.995, 143)


Related Solutions

The average number of minutes Americans commute to work is 27.7 minutes. The average commute time...
The average number of minutes Americans commute to work is 27.7 minutes. The average commute time in minutes for 48 cities are as follows. Albuquerque 23.6 Jacksonville 26.5 Phoenix 28.6 Atlanta 28.6 Kansas City 23.7 Pittsburgh 25.3 Austin 24.9 Las Vegas 28.7 Portland 26.7 Baltimore 32.4 Little Rock 20.4 Providence 23.9 Boston 32.0 Los Angeles 32.5 Richmond 23.7 Charlotte 26.1 Louisville 21.7 Sacramento 26.1 Chicago 38.4 Memphis 24.1 Salt Lake City 20.5 Cincinnati 25.2 Miami 31.0 San Antonio 26.4 Cleveland...
In a random sample of 29 people, the mean commute time to work was 32.5 minutes...
In a random sample of 29 people, the mean commute time to work was 32.5 minutes and the standard deviation was 7.3 minutes. Assume the population is normally distributed and use a ​   t-distribution to construct a 95​% confidence interval for the population mean mu. What is the margin of error of mu​? Interpret the results. Round to one decimal place as needed.
In a random sample of 17 ​people, the mean commute time to work was 30.1 minutes...
In a random sample of 17 ​people, the mean commute time to work was 30.1 minutes and the standard deviation was 7.3 minutes. Assume the population is normally distributed and use a​ t-distribution to construct a 99​% confidence interval for the population mean mu. What is the margin of error of mu​? Interpret the results.
In a random sample of 18 ​people, the mean commute time to work was 34.7 minutes...
In a random sample of 18 ​people, the mean commute time to work was 34.7 minutes and the standard deviation was 7.3 minutes. Assume the population is normally distributed and use a​ t-distribution to construct a 80% confidence interval for the population mean μ. What is the margin of error of μ​? Interpret the results.
In a random sample of 21 people, the mean commute time to work was 34.1 minutes...
In a random sample of 21 people, the mean commute time to work was 34.1 minutes and the standard deviation was 7.2 minutes. Assume the population is normally distributed and use a​ t-distribution to construct a 99​% confidence interval for the population mean μ. What is the margin of error of μ​? Interpret the results. The confidence interval for the population mean μ is __,__ ​(Round to one decimal place as​ needed.) The margin of error of μ is __,__...
In a random sample of 22 ​people, the mean commute time to work was 34.5 minutes...
In a random sample of 22 ​people, the mean commute time to work was 34.5 minutes and the standard deviation was 7.2 minutes. Assume the population is normally distributed and use a​ t-distribution to construct a 90​% confidence interval for the population mean mu. What is the margin of error of mu​? Interpret the results
In a random sample of 22 ​people, the mean commute time to work was 34.5 minutes...
In a random sample of 22 ​people, the mean commute time to work was 34.5 minutes and the standard deviation was 7.2 minutes. Assume the population is normally distributed and use a​ t-distribution to construct a 90​% confidence interval for the population mean mu. What is the margin of error of mu​? Interpret the results
In a random sample of 23 ​people, the mean commute time to work was 31.2 minutes...
In a random sample of 23 ​people, the mean commute time to work was 31.2 minutes and the standard deviation was 7.3 minutes. Assume the population is normally distributed and use a​ t-distribution to construct a 98​% confidence interval for the population mean μ. What is the margin of error of μ​? Interpret the results.
In a random sample of 8 ​people, the mean commute time to work was 35.5 minutes...
In a random sample of 8 ​people, the mean commute time to work was 35.5 minutes and the standard deviation was 7.4 minutes. A 90​% confidence interval using the​ t-distribution was calculated to be (30.5,40.5). After researching commute times to​ work, it was found that the population standard deviation is 9.2 minutes. Find the margin of error and construct a 90​% confidence interval using the standard normal distribution with the appropriate calculations for a standard deviation that is known. Compare...
In a random sample of 28 ​people, the mean commute time to work was 34.4 minutes...
In a random sample of 28 ​people, the mean commute time to work was 34.4 minutes and the standard deviation was 7.3 minutes. Assume the population is normally distributed and use a​ t-distribution to construct a 98​% confidence interval for the population mean mu. What is the margin of error of mu​? The confidence interval for the population mean mu is (__, __)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT