Question

In: Physics

An atom is in a time independent one-dimensional potential well. The system's spatial wave function at...

An atom is in a time independent one-dimensional potential well. The system's spatial wave function at t=0 is Ψ(x,0) = Ax(a-x) for 0<x<a and zero for all other x. (a) The system's energy is measured at t=0. What is the most likely outcome? Find the probability for obtaining this result. (b) What is the systems's average energy at t=0? Compare it with the energy in (a) and explain your answer.

Solutions

Expert Solution


Related Solutions

*One dimensional infinite potential well - probability at a location An electron moving in a one-...
*One dimensional infinite potential well - probability at a location An electron moving in a one- dimensional infinite square well of width L is trapped in the n = 1 state. Compute the probability of finding the electron within the "volume" ?x = 0.019 L at 0.55 L to three decimal places.
explain the three dimensional, time-independent Schrödinger equation. describe the atomic structure of hydrogen atom. explain nuclear...
explain the three dimensional, time-independent Schrödinger equation. describe the atomic structure of hydrogen atom. explain nuclear binding energy and structure. explain nuclear reactions, nuclear fission and nuclear fusion. PLEASE DO NOT WRITE IT BY HAND. Thanks.
1.Normalize the wave function for a particle in infinite potential well? 2.What is the Tunnel effect?...
1.Normalize the wave function for a particle in infinite potential well? 2.What is the Tunnel effect? Calculate depth of penetration in a potential barrier-Which attenuation is to be used as standard for this calculation?
Consider an electron confined in a one-dimensional infinite potential well having a width of 0.4 nm....
Consider an electron confined in a one-dimensional infinite potential well having a width of 0.4 nm. (a) Calculate the values of three longest wavelength photons emitted by the electron as it transitions between the energy levels inside the well [3 pts.]. (b) When the electron undergoes a transition from the n = 2 to the n = 1 level, what will be its emitted energy and wavelength [2 pts.]. To which region of the electromagnetic spectrum does this wavelength belong?...
Demonstrate that the ground-state wave function for the one-dimensional harmonic oscillator satisfies the appropriate Schrodinger's equation
Demonstrate that the ground-state wave function for the one-dimensional harmonic oscillator satisfies the appropriate Schrodinger's equation
What is meant by the orbital approximation for the wave function of a many electron atom?...
What is meant by the orbital approximation for the wave function of a many electron atom? Describe the limitations of this approximation.
Show that the bound state wave function of the δ function's well is well orthogonal to...
Show that the bound state wave function of the δ function's well is well orthogonal to all scattering state wave functions.
Use the Schrodinger equation solution of the H atom corresponding to its wave function for the...
Use the Schrodinger equation solution of the H atom corresponding to its wave function for the 3dxy orbital to explain why this orbital has no radial node. Questions to consider: (j) What is the value of the wave function and thus the radial part of the function at a node? (ii) What factor of the radial part of the wave function, containing r, can equal your value in (i) and thus allow you to obtain a value for r?
The radial wave function for the hydrogen atom in three dimensions is given by Rnl(r) =...
The radial wave function for the hydrogen atom in three dimensions is given by Rnl(r) = 1 r ρ l+1e −ρ v(ρ) where v(ρ) = P∞ j=0 cjρ j is a polynomial of degree jmax = n−l−1 in ρ whose coefficients are determined by the recursion formula cj+1 = 2(j + l + 1 − n) (j + 1)(j + 2l + 2)cj . (a) For n = 2 write down the allowed values of ml and jmax. Hence by...
Suppose the electron in a hydrogen atom is modeled as an electron in a one-dimensional box...
Suppose the electron in a hydrogen atom is modeled as an electron in a one-dimensional box of length equal to the Bohr diameter, 2a0. What would be the ground-state energy of this "atom"? ______________eV
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT