Question

In: Math

5. Equations of the form y’ = P(x)*y^2 + Q(x)*y + R(x) are called Riccati equations....

5. Equations of the form y’ = P(x)*y^2 + Q(x)*y + R(x) are called Riccati equations.

i) If we know a solution y = φ(x) of this equation, then any other solution

can be written in the form y(x) = φ(x)+ 1/v(x), where v(x) is an unknown

function which satisfies a certain linear equation. Using the fact that

φ and y both solve the above Riccati equation, find the differential

equation that v satisfies.

ii) Consider the equation 3y’ + y^2 +2/(x^2) = 0. Find one solution of this equation by inspection.

iii) Use the method of part(i) to find the general solution of the equation

in (ii).

Solutions

Expert Solution


Related Solutions

5. Equations of the form y’ = P(x)*y^2 + Q(x)*y + R(x) are called Riccati equations....
5. Equations of the form y’ = P(x)*y^2 + Q(x)*y + R(x) are called Riccati equations. i) If we know a solution y = φ(x) of this equation, then any other solution can be written in the form y(x) = φ(x)+ 1/v(x), where v(x) is an unknown function which satisfies a certain linear equation. Using the fact that φ and y both solve the above Riccati equation, find the differential equation that v satisfies. ii) Consider the equation 3y’ +...
Given the function u(p,q,r)=((p-q)/(q-r)), with p=x+y+z,q=x-y+z, and r=x+y-z, find the partial derivatives au/ax=, au/ay=, au/az=
Given the function u(p,q,r)=((p-q)/(q-r)), with p=x+y+z,q=x-y+z, and r=x+y-z, find the partial derivatives au/ax=, au/ay=, au/az=
1.) Suppose that the statement form ((p ∧ ∼ q)∨(p ∧ ∼ r))∧(∼ p ∨ ∼...
1.) Suppose that the statement form ((p ∧ ∼ q)∨(p ∧ ∼ r))∧(∼ p ∨ ∼ s) is true. What can you conclude about the truth values of the variables p, q, r and s? Explain your reasoning 2.Use the Laws of Logical Equivalence (provided in class and in the textbook page 35 of edition 4 and page 49 of edition 5) to show that: ((∼ (p ∨ ∼ q) ∨ (∼ p ∧ ∼ r)) ∧ s) ≡ ((r...
Let x,y ∈ R satisfy x < y. Prove that there exists a q ∈ Q...
Let x,y ∈ R satisfy x < y. Prove that there exists a q ∈ Q such that x < q < y. Strategy for solving the problem Show that there exists an n ∈ N+ such that 0 < 1/n < y - x. Letting A = {k : Z | k < ny}, where Z denotes the set of all integers, show that A is a non-empty subset of R with an upper bound in R. (Hint: Use...
Find the general solution for the equations: P(x) y"+ xy' - y = 0 a) P(x)=...
Find the general solution for the equations: P(x) y"+ xy' - y = 0 a) P(x)= x b) P(x)= x2 c) P(x) = 1
For what values of "c" is the quadratic form q(x, y) = 3x2 — (5 +...
For what values of "c" is the quadratic form q(x, y) = 3x2 — (5 + c)xy + 2cy2 a) positive definite, b) positive semi-definite, c) indefinite?
Solve the system of equations: x+y^2=6y x-2y=-5
Solve the system of equations: x+y^2=6y x-2y=-5
5. Given the function y = q(x) = (x^2)/(x-1) a. What is the domain of q(x)?...
5. Given the function y = q(x) = (x^2)/(x-1) a. What is the domain of q(x)? b. What are the vertical asymptotes? c. What are the horizontal asymptotes? d. Where is q(x) increasing/decreasing (draw a line and specify by intervals – be sure to include points where q isn’t defined)? e. Where is q(x) concave up/down ((draw a line and specify by intervals – be sure to include points where q isn’t defined)? f. Find rel max/min. g. Find inflection...
Consider the homogeneous second order equation y′′+p(x)y′+q(x)y=0. Using the Wronskian, find functions p(x) and q(x) such...
Consider the homogeneous second order equation y′′+p(x)y′+q(x)y=0. Using the Wronskian, find functions p(x) and q(x) such that the differential equation has solutions sinx and 1+cosx. Finally, find a homogeneous third order differential equation with constant coefficients where sinx and 1+cosx are solutions.
Let p, q, g : R → R be continuous functions. Let L[y] := y'' +...
Let p, q, g : R → R be continuous functions. Let L[y] := y'' + py' + qy. (i) Explain what it means for a pair of functions y1 and y2 to be a fundamental solution set for the equation L[y] = 0. (ii) State a theorem detailing the general solution of the differential equation L[y] = g(t) in terms of solutions to this, and a related, equation.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT