Question

In: Physics

A spherical cannonball of mass 2M is launched with an initial velocity v0 at an angle...

A spherical cannonball of mass 2M is launched with an initial velocity v0 at an angle of 45° above the horizontal. There is an explosive charge between the two halves of the cannonball which is detonated when the cannonball has reached the highest point of its trajectory. One half of the cannonball (mass M) is propelled backwards exactly along the original trajectory and lands back in the cannon (good trick!). Ignore air resistance for this problem.

a) Assuming level terrain, find the range of the center of mass of the system, i.e., how far away from the cannon does the center of mass of the system land?

b) Find the velocity of the second half of the cannonball (the one that doesn't land back in the cannon) immediately after the explosion.

c) How far away from the cannon does the second half of the cannonball land?

Solutions

Expert Solution

I hope you understood the problem and got your answers, If yes rate me!! or else comment for a better solutions.


Related Solutions

A cannonball is launched with a velocity of 52.5 ms at an angle of 47.2◦ above...
A cannonball is launched with a velocity of 52.5 ms at an angle of 47.2◦ above the horizontal on a flat firing range. Ignoring air resistance for every part, determine (a) the maximum height reached by the cannonball, (b) the total time in the air, (c) the total horizontal distance covered, (d) and the speed and direction (angle) of the cannonball 1.50 s after firing.
If a projectile is fired with an initial velocity v0 meters per second at an angle...
If a projectile is fired with an initial velocity v0 meters per second at an angle α above the horizontal and air resistance is assumed to be negligible, then its position after t seconds is given by the parametric equations x=(v0 cos α)t     &     y=(v0 sin α) t-1/2gt2   Suppose α=30o and v0=500 m/s (a) At what time t does the projectile hit the ground? (b) How far does the projectile travel from the time it is fired until the time...
A projectile is launched vertically from a launch pad with an unknown initial velocity, V0. An...
A projectile is launched vertically from a launch pad with an unknown initial velocity, V0. An unknown time, T, later, an observer is in a pickup which is traveling in such a way that the angle of elevation to the projectile is 22° and increasing at 2° per second. When the pickup is 750 m away from the launch pad, it is moving away from the launch pad at 25 m/sec. A) Find the initial velocity, V0. B) Find the...
A ball is thrown upward with initial velocity v0 = 15.0 m/s at an angle of...
A ball is thrown upward with initial velocity v0 = 15.0 m/s at an angle of 30° with the horizontal. The thrower stands near the top of a Jong hill which slopes downward at an angle of 20°. Determine how far down the slope the ball strikes.
An object is launched with an initial velocity of 50.0 m/s at a launch angle of...
An object is launched with an initial velocity of 50.0 m/s at a launch angle of 36.9∘ above the horizontal. Determine x-values at each 1 s from t = 0 s to t = 6 s. Determine y-values at each 1 s from t = 0 s to t = 6 s. Determine vx-values at each 1 s from t = 0 s to t = 6 s. Determine vy-values at each 1 s from t = 0 s to...
An object is launched with an initial velocity of 50.0 m/s at a launch angle of...
An object is launched with an initial velocity of 50.0 m/s at a launch angle of 36.9? above the horizontal. A.Determine x-values at each 1 s from t = 0 s to t = 6 s. B.Determine y-values at each 1 s from t = 0 s to t = 6 s. C.Determine vx-values at each 1 s from t = 0 s to t = 6 s. D.Determine vy-values at each 1 s from t = 0 s to...
A projectile is launched with an initial velocity vo at an angle theta above the horizontal....
A projectile is launched with an initial velocity vo at an angle theta above the horizontal. In terms of vo, theta and acceleration due to gravity g, determine for the projectile i) the time to reach its maximum height and ii) its maximum height.
A cannonball is fired at a cliff of height h with an initial speed of v0...
A cannonball is fired at a cliff of height h with an initial speed of v0 = 42.0 m/s directed at an angle of θ = 60.0° above the horizontal. The cannonball strikes point A precisely 5.50 s after it is launched. Ignore air resistance. a) Find the maximum height the cannonball reaches, H. b) Find the height of the cliff, h. c) Find the velocity of the cannonball the instant before it strikes point A. Give your answer in...
A bullet of mass m is fired from the initial ground velocity of magnitude v0 at...
A bullet of mass m is fired from the initial ground velocity of magnitude v0 at elevation angle θ0. (a) Express her momentum relative to the location of the shot as a function of time. (b) How fast does the momentum change? (c) Calculate the size vector r × F directly and compare it with the result of problem (b). Why both results are identical
An airplane is flying with a velocity of v0 at an angle of α above the...
An airplane is flying with a velocity of v0 at an angle of α above the horizontal. When the plane is a distance h directly above a dog that is standing on level ground, a suitcase drops out of the luggage compartment. How far from the dog will the suitcase land? You can ignore air resistance. Take the free fall acceleration to be g.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT