Question

In: Physics

A projectile is launched with an initial velocity vo at an angle theta above the horizontal....

A projectile is launched with an initial velocity vo at an angle theta above the horizontal.
In terms of vo, theta and acceleration due to gravity g, determine for the projectile
i) the time to reach its maximum height and
ii) its maximum height.

Solutions

Expert Solution

We take the upward direction to be positive, and downward direction to be negative.

(i)

Initial vertical velocity is

Vertical acceleration is

We take vertical acceleration as negative because it is directed in the downward direction.

At the maximum height, the vertical velocity of the projectile changes its direction from up to down. At the moment vertical velocity changes its direction from up to down, the vertical velocity is momentarily zero. So, at the maximum height

The vertical acceleration is constant. The vertical motion is governed by the kinematics equation for uniformly accelerated motion. To find time for changing velocity from viy to vy=0 we use

(ii)

Maximum height is equal to the vertical distance traveled by the projectile in time t. Since vertical motion is uniformly accelerated motion, the motion is governed by the kinematics equation for uniformly accelerated motion. To find vertical distance traveled, we use


Related Solutions

A projectile is launched with initial velocity of 11 m/s at 30.5 degrees above the horizontal....
A projectile is launched with initial velocity of 11 m/s at 30.5 degrees above the horizontal. - find the x-component of the initial velocity: - find the y-component of the initial velocity:
A projectile is launched at an angle of 60 degrees to the horizontal from 6.5ft above...
A projectile is launched at an angle of 60 degrees to the horizontal from 6.5ft above the ground at an initial speed of 100 ft/sec. Assume the x-axis is horizontal, the positive y axis is vertical (opposite g), the ground is horizontal, and the only gravitational force acta on the object. Answer parts A through D. A) Find the velocity - v(t) and position - r(t) vectors for t greater than or equal to 0. B) Graph the trajectory C)...
A projectile is fired at an angle of 28 degrees above the horizontal with an initial...
A projectile is fired at an angle of 28 degrees above the horizontal with an initial velocity of 1800 feet per second from an altitude of 1,000 feet above the level ground.   A) Formulate the vector valued function (in simplified form) for the position of the projectile at any time,t. B) When and where (in terms of down range distance) does the projectile strike the ground? Be clear and label your results, including units. C) When does the projectile reach...
A rocket is launched at an angle of 60.0° above the horizontal with an initial speed...
A rocket is launched at an angle of 60.0° above the horizontal with an initial speed of 99 m/s. The rocket moves for 3.00 s along its initial line of motion with an acceleration of 29.0 m/s2. At this time, its engines fail and the rocket proceeds to move as a projectile. Find the maximum altitude reached by the rocket. Find its total time of flight. Find its horizontal range.
A rocket is launched at an angle of 50.0° above the horizontal with an initial speed...
A rocket is launched at an angle of 50.0° above the horizontal with an initial speed of 95 m/s. The rocket moves for 3.00 s along its initial line of motion with an acceleration of 29.0 m/s2. At this time, its engines fail and the rocket proceeds to move as a projectile. (a) Find the maximum altitude reached by the rocket. (b) Find its total time of flight. (c) Find its horizontal range. (c) Find its horizontal range.
A rocket is launched at an angle of 57.0° above the horizontal with an initial speed...
A rocket is launched at an angle of 57.0° above the horizontal with an initial speed of 103 m/s. The rocket moves for 3.00 s along its initial line of motion with an acceleration of 28.0 m/s2. At this time, its engines fail and the rocket proceeds to move as a projectile. (a) Find the maximum altitude reached by the rocket. (b) Find its total time of flight. (c) Find its horizontal range.
A 46.0-kg projectile is fired at an angle of 30.0° above the horizontal with an initial...
A 46.0-kg projectile is fired at an angle of 30.0° above the horizontal with an initial speed of 142 m/s from the top of a cliff 150 m above level ground, where the ground is taken to be y = 0. (a) What is the initial total mechanical energy of the projectile? (Give your answer to at least three significant figures.) J (b) Suppose the projectile is traveling 100.6 m/s at its maximum height of y = 360 m. How...
A 40.0-kg projectile is fired at an angle of 30.0° above the horizontal with an initial...
A 40.0-kg projectile is fired at an angle of 30.0° above the horizontal with an initial speed of 134 m/s from the top of a cliff 132 m above level ground, where the ground is taken to be y = 0. (a) What is the initial total mechanical energy of the projectile? (Give your answer to at least three significant figures.) J (b) Suppose the projectile is traveling 95.0 m/s at its maximum height of y = 319 m. How...
A projectile is fried at an angle of 58° above the horizontal at a speed of...
A projectile is fried at an angle of 58° above the horizontal at a speed of 100 m/s. Part A: calculate the magnitude of its velocity at t= 5.0 s Part B: calculate the direction of its velocity (above the horizontal) at t= 5.0s Part C: Calculate the magnitude of its velocity at t= 10s part D: calculate the direction of its velocity (above the horizontal) at t= 10s part E: calculate the magnitude of its velocity at t= 15s...
A shell is launched at angle 62° above the horizontal with initial speed 30 m/s. It...
A shell is launched at angle 62° above the horizontal with initial speed 30 m/s. It follows a typical projectile-motion trajectory, but at the top of the trajectory, it explodes into two pieces of equal mass. One fragment has speed 0 m/s immediately after the explosion, and falls to the ground. How far from the launch-point does the other fragment land, assuming level terrain and negligible air resistance?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT