Question

In: Physics

A spherical conductor carries a charge −30 μC and has a radius of 20 cm. a)...

A spherical conductor carries a charge −30 μC and has a radius of 20 cm.

a) Determine the electric field and potential at all points in space.

b) Calculate the values of the field and potential at the following points:

i) r = 20 cm, ii) r = 15 cm, iii) r = 40 cm.

Solutions

Expert Solution

(a) Let R is the radius of the sphere, and Q be the charge on the conductive sphere.

We can calculate the electric field from Gauss's Law.

And the Potential can be calculated using the following relation with electric field.

Case.1: For r>R

Electric Field:

Electric Potential:

Case.2: For r=R

Electric Field:

Electric Potential:

Case.3: For r<R

For a conductive sphere, the charge resides only on the surface, so, charge inside is zero.

so for r < R i.e., within the sphere, Q=0.

Electric Field,

  

And hence, the potential should be constant, as the gradient of the potential should be zero which is the electric field.

We can get the value as follows,

(b)

(i) r=20 cm; i.e, r=R

So, let us substitute the values of in E and V expressions as obtained above case.2

and potential,

(ii)r=15 cm; i.e, r<R

So, let us substitute the values of in E and V expressions as obtained above case.3

E=0

and the Potential is same as that of the value that is on surface.

(iii) r= 40 cm; i.e, r>R

So, let us substitute the values of in E and V expressions as obtained above case.1

and potential,


Related Solutions

A spherical conductor has a radius of 14 cm and a charge of 26 micro columns....
A spherical conductor has a radius of 14 cm and a charge of 26 micro columns. Calculate the electric field (vector) and the electrical potential at a). R=10 cm from center b). R= 20 cm fromcenter c). R=14 cm center Please show all of your work!
A spherical conductor has a radius of 14.0 cm and a charge of 32.0 µC. Calculate...
A spherical conductor has a radius of 14.0 cm and a charge of 32.0 µC. Calculate the electric field and the electric potential at the following distances from the center. a) r =8.0 cm electric field: MN/C electric potential: MV b) r = 36.0 cm electric field: MN/C electric potential: MV c) r = 14.0 cm electric field: MN/C electric potential: MV
A spherical conductor has a radius of 14.0 cm and a charge of 26.0 µC. Calculate...
A spherical conductor has a radius of 14.0 cm and a charge of 26.0 µC. Calculate the electric field and the electric potential at: (a) r = 10.0 cm, (b) r = 20.0 cm, (c) r = 14.0 cm from the center.
Charge is added to a spherical conductor of radius 20.0 cm. (a) If the maximum electrical...
Charge is added to a spherical conductor of radius 20.0 cm. (a) If the maximum electrical field the air surrounding the sphere can sustain without the molecules being ionized is 3.00 × 106 V/m, what is the maximum charge that can be placed on the sphere? Let the charge placed on the sphere be 5.00 μC. (b) What is the potential at the surface of the sphere? (c) What is the potential at a point located 10.0 cm from the...
A) An isolated spherical conductor has an excess charge of -9.8 μC placed on its surface....
A) An isolated spherical conductor has an excess charge of -9.8 μC placed on its surface. Inside the conductor is a cavity, within which is a point charge of 4.10 μC. How many excess electrons are on the exterior surface of the conductor? B) A cubical box has a charge q = -2.1 μC placed at its center. Calculate the electric flux through the right face of the box. C) A charged ball with a mass of 10.0 g is...
Metal sphere A of radius 11.0 cm carries 9.00 μC of charge, and metal sphere B...
Metal sphere A of radius 11.0 cm carries 9.00 μC of charge, and metal sphere B of radius 20.0 cm carries −2.00 μC of charge. If the two spheres are attached by a very long conducting thread, what is the final distribution of charge on the two spheres? Charge on sphere A (μC)? Charge on sphere B (μC)?
A thin-walled metal spherical shell of radius a = 1.80 cm has a charge qa =...
A thin-walled metal spherical shell of radius a = 1.80 cm has a charge qa = 8.00×10-6C. Concentric with it is a thin-walled metal spherical shell of radius b = 5.20 cm and charge qb = 2.50×10-6 C. Find the electric field at distance r = 0 cm from the common center. Tries 0/10 Find the electric field at distance r = 3.70 cm from the common center. Tries 0/10 Find the electric field at distance r = 8.90 cm...
An infinitely long conducting cylinder of radius 2 cm has a linear charge density +3 μC/m...
An infinitely long conducting cylinder of radius 2 cm has a linear charge density +3 μC/m is surrounded by an insulating shell of inner radius 8 cm and outer radius 12 cm. The insulating shell has a net linear charge density of +3 μC/m which may be assumed to be uniformly distributed through its volume What is the electric potential difference (ΔV) between 12 cm and 15 cm? What is the electric potential difference (ΔV) between 8 cm and 12...
There is a solid, spherical dielectric (radius = 3 m) with a total charge of 30...
There is a solid, spherical dielectric (radius = 3 m) with a total charge of 30 μC and with uniform charge density. What is the electric field strength and the electric potential at -the center? (answer is 0 N/C and 135,000 V just show the work) -a distance 2 m from the center? (answer is 20,000 N/C and 115,000 V just show the work)
Consider a thin, spherical shell of radius 12.0 cm with a total charge of 34.8 µC...
Consider a thin, spherical shell of radius 12.0 cm with a total charge of 34.8 µC distributed uniformly on its surface. (a) Find the electric field 10.0 cm from the center of the charge distribution. magnitude MN/C direction ---Select--- radially inward radially outward the electric field is zero (b) Find the electric field 22.0 cm from the center of the charge distribution. magnitude MN/C direction
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT