Question

In: Physics

Two lasers are sent through the same double-slit device. A blue laser has a wavelength of...

Two lasers are sent through the same double-slit device. A blue laser has a wavelength of

430nm, and a red laser has a wavelength of 645nm. The spacing of the slits is 2mm, and the

distance to the screen is 1.0m.

A) Sketch what the blue laser will look like on the screen; give a distance scale.

B) On your diagram, find a point at which both the red light and blue light will be at a bright

fringe. Show supporting calculations.

C) On your diagram, find a point at which red light is maximum, but the blue light is

*minimum*. (All red light, no blue light.) Show supporting calculations.

D) Qualitatively, what happens to the light on the screen if one of the slits is blocked?

Solutions

Expert Solution


Related Solutions

Two lasers are shining on a double slit, with slit separation d. Laser 1has a wavelength of d/20, whereas laser 2 has a wavelength of d/15
Two lasers are shining on a double slit, with slit separation d. Laser 1has a wavelength of d/20, whereas laser 2 has a wavelength of d/15. The lasers produce separate interference patterns on a screen a distance 5.00 m away from the slits.Part AWhich laser has its first maximum closer to the central maximum?Part BWhat is the distance  Δymax-max between the first maxima (on the same side of the central maximum) of the two patterns?Part B.1 Find the location of...
Two lasers are shining on a double slit, with slit separation d. Laser 1 has a...
Two lasers are shining on a double slit, with slit separation d. Laser 1 has a wavelength of d/20, whereas laser 2 has a wavelength of d/15. The lasers produce separate interference patterns on a screen a distance 5.30m away from the slits. 1.Which laser has its first maximum closer to the central maximum? Laser one or Laser 2 ? 2. What is the distance ?ymax?max between the first maxima (on the same side of the central maximum) of the...
In a double-slit experiment, light with a wavelength λ passes through a double-slit and forms an...
In a double-slit experiment, light with a wavelength λ passes through a double-slit and forms an interference pattern on the screen at a distance L from the slits. What statement is true for the resulting interference pattern if the frequency of the light increases? OPTIONS: The distance between maxima stays the same.T he distance between maxima increases. The distance between maxima decreases. Not enough information given.
An argon laser that has a wavelength of 455 nm shines on a double-slit apparatus, which...
An argon laser that has a wavelength of 455 nm shines on a double-slit apparatus, which produces an interference pattern on a screen that is 10.0 m away from the slits. The slit separation distance is 70.0 μm. (a) How many bright fringes are there on the screen within an angle of ±1° relative to the central axis? (b) How many dark fringes are there on the screen within an angle of ±2° relative to the central axis? Be careful...
A double slit experiment is conducted with a red laser with wavelength l = 700 nm....
A double slit experiment is conducted with a red laser with wavelength l = 700 nm. The distance between the slits and the viewing screen is L = 2.00 m. Consider two experiments that have different slit spacings: Experiment A with dA = 2.00 μm and Experiment B with dB = 40.0 μm. For each experiment, calculate the following (be sure to keep at least three significant figures in all your intermediate calculations): a) Using Δr = d sinθ ,...
Light of unknown wavelength passes through a double slit, yielding both double slit and diffraction patterns...
Light of unknown wavelength passes through a double slit, yielding both double slit and diffraction patterns on a screen that is 1 m away from the slits. You see that the 9th double-slit maximum coincides with the 2nd single-slit diffraction minimum. You also observe that the first diffraction minimum is located 3 cm from the central axis on the screen. (a) What is the ratio of double-slit separation to single slit width, d/a? (b) If d = 72 µm, what...
Light from a He-Ne laser (wavelength 633nm) passes through a single slit of width 25μm. At...
Light from a He-Ne laser (wavelength 633nm) passes through a single slit of width 25μm. At the screen a distance away, the intensity at the center of the central maxima is 8.25 W/m^2. a. Draw a clear diagram showing the slit and the intensity pattern seen on the screen. Label key quantities and key features. b. Find the maximum number of totally dark fringes (minima) seen on the screen. c. At what angle does the dark fringe (minima) that is...
Blue light of wavelength 470 nm passes through an interference grating with a slit spacing of0.001...
Blue light of wavelength 470 nm passes through an interference grating with a slit spacing of0.001 mm and makes an interference pattern on the wall. How many bright fringes will be seen?
1) A 600 nm laser illuminates a double slit apparatus with a slit separation distance of...
1) A 600 nm laser illuminates a double slit apparatus with a slit separation distance of 3.55 μm. The viewing screen is 1.50 meters behind the double slits. What is the distance (in meters) from the central bright fringe to the 3nd dark fringe? 2) A 600 nm laser illuminates a double slit apparatus with a slit separation distance of 3.55 μm. The viewing screen is 1.50 meters behind the double slits. What is the distance (in cm) between the...
1) A 680 nm laser illuminates a double slit apparatus with a slit separation distance of...
1) A 680 nm laser illuminates a double slit apparatus with a slit separation distance of 7.83 μm. On the viewing screen, you measure the distance from the central bright fringe to the 2nd bright fringe to be 88.2 cm. How far away (in meters) is the viewing screen from the double slits?   2) A 600 nm laser illuminates a double slit apparatus with a slit separation distance of 3.55 μm. The viewing screen is 1.50 meters behind the double...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT