In: Math
The types of raw materials used to construct stone tools found at an archaeological site are shown below. A random sample of 1486 stone tools were obtained from a current excavation site.
Raw Material | Regional Percent of Stone Tools | Observed Number of Tools as Current excavation Site |
Basalt | 61.3% | 905 |
Obsidian | 10.6% | 163 |
Welded Tuff | 11.4% | 165 |
Pedernal chert | 13.1% | 201 |
Other | 3.6% | 52 |
Use a 1% level of significance to test the claim that the regional distribution of raw materials fits the distribution at the current excavation site.
(a) What is the level of significance?
State the null and alternate hypotheses.
H0: The distributions are the same.
H1: The distributions are the same.
H0: The distributions are the same.
H1: The distributions are
different.
H0: The distributions are different.
H1: The distributions are different.
H0: The distributions are different.
H1: The distributions are the same.
(b) Find the value of the chi-square statistic for the sample.
(Round the expected frequencies to at least three decimal places.
Round the test statistic to three decimal places.)
Are all the expected frequencies greater than 5?
Yes
No
What sampling distribution will you use?
normal
Student's t
binomial
uniform
chi-square
What are the degrees of freedom?
(c) Find or estimate the P-value of the sample test
statistic.
P-value > 0.100
0.050 < P-value < 0.100
0.025 < P-value < 0.050
0.010 < P-value < 0.025
0.005 < P-value < 0.010
P-value < 0.005
(d) Based on your answers in parts (a) to (c), will you reject or
fail to reject the null hypothesis of independence?
Since the P-value > α, we fail to reject the null hypothesis.
Since the P-value > α, we reject the null hypothesis.
Since the P-value ≤ α, we reject the null hypothesis.
Since the P-value ≤ α, we fail to reject the null hypothesis.
(e) Interpret your conclusion in the context of the
application.
At the 0.01 level of significance, the evidence is sufficient to conclude that the regional distribution of raw materials does not fit the distribution at the current excavation site.
At the 0.01 level of significance, the evidence is insufficient to conclude that the regional distribution of raw materials does not fit the distribution at the current excavation site.
Solution:-
a)
H0: The distributions are the same.
H1: The distributions are different.
b)
Formulate an analysis plan. For this analysis, the significance level is 0.01. Using sample data, we will conduct a chi-square goodness of fit test of the null hypothesis.
Analyze sample data. Applying the chi-square goodness of fit test to sample data, we compute the degrees of freedom, the expected frequency counts, and the chi-square test statistic. Based on the chi-square statistic and the degrees of freedom, we determine the P-value.
DF = k - 1 = 5 - 1
D.F = 4
(Ei) = n * pi
X2 =
0.592
where DF is the degrees of freedom, k is the number of levels of the categorical variable, n is the number of observations in the sample, Ei is the expected frequency count for level i, Oi is the observed frequency count for level i, and X2 is the chi-square test statistic.
The P-value is the probability that a chi-square statistic having 1 degrees of freedom is more extreme than 0.592.
We use the Chi-Square Distribution Calculator to find P(X2 > 0.592) = 0.964.
Interpret results. Since the P-value (0.964) is greater than the significance level (0.05), we cannot accept the null hypothesis.
c) P-value > 0.100.
d) Since the P-value > α, we fail to reject the null hypothesis.
e) At the 0.01 level of significance, the evidence is insufficient to conclude that the regional distribution of raw materials does not fit the distribution at the current excavation site.