In: Finance
| 
 State of economy  | 
 Probability  | 
 Estimated Return (Fund A)  | 
 Estimated Return (Fund B)  | 
| 
 Great  | 
 30%  | 
 10%  | 
 25%  | 
| 
 Average  | 
 30%  | 
 15%  | 
 11%  | 
| 
 Poor  | 
 40%  | 
 20%  | 
 15%  | 
If you invest $2,000 in Fund A and $8,000 in Fund B, Calculate the following:
A.Portfolio’s Standard Deviation
B. Construct the complete covariance and correlation matrixes for A&B
C. Find the minimum variance portfolio using solver and report its variance, standard Deviation and expected return
| Expected Return =Mean Return =SUMof ((Probability)*(Return)) | ||||||||
| Variance of Return =Sum of(Probability* (Deviation ^2)) | ||||||||
| Deviation =Return -Mean Return | ||||||||
| Standard Deviation of Return =Square Root of Variance of Return | ||||||||
| ANALYSIS OF FUND A | ||||||||
| p | R1 | A1=R1*P | D1=R1-15.5 | E1=(D1^2) | F1=p*E1 | |||
| State of Economy | Probability | Return(%) | Probability*Return(%) | Deviation(%) | Deviation Squared(%%) | Probability*Deviation Squared(%%) | ||
| Great | 0.3 | 10 | 3 | -5.5 | 30.25 | 9.075 | ||
| Average | 0.3 | 15 | 4.5 | -0.5 | 0.25 | 0.075 | ||
| Poor | 0.4 | 20 | 8 | 4.5 | 20.25 | 8.1 | ||
| SUM | 15.5 | SUM | 17.25 | |||||
| Expected Return =Mean return | 15.5 | % | ||||||
| Variance of Return | 17.25 | %% | ||||||
| Standard Deviation of Return =SQRT(17.25)= | 4.15 | % | ||||||
| ANALYSIS OF FUND B | ||||||||
| p | R2 | A2=R2*p | D2=R2-16.8 | E2=(D2^2) | F2=p*E2 | |||
| State of Economy | Probability | Return(%) | Probability*Return(%) | Deviation(%) | Deviation Squared(%%) | Probability*Deviation Squared(%%) | ||
| Great | 0.3 | 25 | 7.5 | 8.2 | 67.24 | 20.172 | ||
| Average | 0.3 | 11 | 3.3 | -5.8 | 33.64 | 10.092 | ||
| Poor | 0.4 | 15 | 6 | -1.8 | 3.24 | 1.296 | ||
| SUM | 16.8 | SUM | 31.56 | |||||
| Expected Return =Mean return | 16.8 | % | ||||||
| Variance of Return | 31.56 | %% | ||||||
| Standard Deviation of Return =SQRT(31.56)= | 5.62 | % | ||||||
![]() ![]() ![]()  | 
||||||||