Question

In: Other

An isothermal CSTR is used for liquid phase reaction A+B→C+D, -ra=kC_a*C_b   and k=1x10^11 exp⁡((-36900)/2.74T) determine the residence...

An isothermal CSTR is used for liquid phase reaction A+B→C+D, -ra=kC_a*C_b   and k=1x10^11 exp⁡((-36900)/2.74T) determine the residence time required for this reaction to achieve 60 % conversion of the limiting reagent and mole fraction of C. The feed to the reactor is 200 mol/min A and 150 mole/min of B with flow rate of 20 l/min. The inlet temperature is 497 K.

Solutions

Expert Solution


Related Solutions

An elementary reaction A+B  C+D is to be carried out in a non-ideal CSTR which...
An elementary reaction A+B  C+D is to be carried out in a non-ideal CSTR which has both bypassing and a stagnant region in this reactor. The measured reactor volume is 1.0 m3 and the flow rate to the reactor is 0.1 m3/min. The reaction rate constant is 0.28 m3/kmol.min. The feed is equimolar in A and B with an entering concentration of A equal to 2.0 kmol/m3 k. Calculate the conversion that can be expected in this reactor if...
Elementary , irreversible and isothermal gas phase reaction A+B--------- C. Reaction rate constant is 20M-1min-1 at...
Elementary , irreversible and isothermal gas phase reaction A+B--------- C. Reaction rate constant is 20M-1min-1 at temeperature 80 degree celcius . Feed flow rate (10L/min) to the plug flow reactor , which volume is 80 litres, contains 2%A and 2%B and inert gas temperature of 80 degree celcius and pressure 6 bar . Calculate the conversion of A.
The liquid-phase reaction     A---> B + C takes place in a series of two CSTRs...
The liquid-phase reaction     A---> B + C takes place in a series of two CSTRs with an overall conversion of 0.75. Two newly purchased CSTRs are added to the series. The volumetric flow rate is then increased in order to keep the overall conversion at 0.75. (a) List all your assumptions. (b) If the original flow rate was 150 L/min, determine the new flow rate (L/min).
The elementary liquid phase reaction A + B C is carried out in a 550 dm3...
The elementary liquid phase reaction A + B C is carried out in a 550 dm3 reactor. The entering concentrations of streams A and B are both 2-molar and the specific reaction rate is 0.015 dm3/(mol*min). 1.1 Calculate the time to reach 80%conversion if the reactor is a batch reactor filled to the brim. 1.2 Assuming a stoichiometric feed (10 mol A/min) to a continuous flow reactor, calculate the reactor volume and space-time to achieve 80% conversion if the reactor...
A liquid reaction A+B->C, r=kC_B*C_A^2 takes place in a CSTR of volume V_R in the presence...
A liquid reaction A+B->C, r=kC_B*C_A^2 takes place in a CSTR of volume V_R in the presence of a large excess of reactants B. Assume the reactor achieves 50% conversion of A at steady state. Material Balance for only one reactor hint: solve for VR1 for XA=0.5 (a) what is the steady state conversion if the original reactor is replaced by two CSTR'S of volume V_R/2 in series? hint: 0= Q1CA1-Q2CA2-kCA2^2VR2 hint: CA1/Caf=0.618 Xa2=0.568 (b) what is the conversion if the...
The irreversible elementary reaction 2A > B takes place in the gas phase in an isothermal...
The irreversible elementary reaction 2A > B takes place in the gas phase in an isothermal tubular reactor. The feed is one mole of A per one mole of C, an inert. The entering temperature and pressure are 427°C and 10 atm, respectively. The gas constant R = 0.08206 atm · L/mol · K. (a) Determine the concentration of A at the entrance to the reactor. (b) If CA0 = 1.0 mol/L, what is the concentration of A at 90%...
The gas phase reaction: 2A+B = 3C , is carried out in an isothermal packed bed...
The gas phase reaction: 2A+B = 3C , is carried out in an isothermal packed bed reactor. The rate is first order with respect to reactants A and B (second order overall) with the rate constant of 14 [liter2 /mole kg of catalyst sec.]. The feed is 50% A, 25 % B and 25 % inert at temperature of 500 K and P = 18 atm and a total flow rate of 20 mole/sec. The exit pressure is measured to...
Consider the following reaction at 309 K. 1 A + 1 B → C + D...
Consider the following reaction at 309 K. 1 A + 1 B → C + D where rate = rate=k[A]2[B]. An experiment was performed for a certain number of seconds where [A]o = 1.07 M and [B]o = 0.000167 M. A plot of ln[B] vs time had a slope of -9.63. What will the rate of this reaction be if a new experiment is preformed when [A] = [B] = 0.212 M?
Consider the following reaction at 283 K: 2A + B → C + D where rate...
Consider the following reaction at 283 K: 2A + B → C + D where rate = k[A][B]2. An experiment was performed where [A]o = 2.67 M and [B]o = 0.00241 M. A plot of 1/[B] vs. time has a slope of 10.01. What will the rate of this reaction be when [A] = [B] = 0.345 M?
A really important chemical (D) is produced from available feedstock (A) in liquid phase reaction. At...
A really important chemical (D) is produced from available feedstock (A) in liquid phase reaction. At reaction conditions, A also degrades into undesirable impurity (U). The reactions are given as: A D rD = k1C 2 A A U rU = k2CA The reaction is carried out in two CSTRs with residence times of 2.5 min and 10 min respectively connected in series. The feed to the first reactor contains A and U with concentrations of CA0= 1.0, and CU0...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT