In: Operations Management
Using the data set provided; Make (and state) any necessary assumptions and apply the following forecast method to the earliest two years of actual data:
Three-period simple moving average
Cumulative forecast error (CFE)
Mean error
Mean absolute deviation (MAD)
Mean absolute percentage error (MAPE)
Tracking signal
Shipments | Fasteners |
Jan-17 | 335798 |
Feb-17 | 297853 |
Mar-17 | 318399 |
Apr-17 | 311730 |
May-17 | 363876 |
Jun-17 | 296832 |
Jul-17 | 297513 |
Aug-17 | 321144 |
Sep-17 | 317677 |
Oct-17 | 325487 |
Nov-17 | 272937 |
Dec-17 | 276282 |
Jan-18 | 335439 |
Feb-18 | 310514 |
Mar-18 | 407754 |
Apr-18 | 356169 |
May-18 | 345322 |
Jun-18 | 331997 |
Jul-18 | 343059 |
Aug-18 | 350277 |
Sep-18 | 265205 |
Oct-18 | 389332 |
Nov-18 | 310474 |
Dec-18 | 308429 |
Jan-19 | 385807 |
Feb-19 | 332529 |
Mar-19 | 407606 |
Apr-19 | 361946 |
May-19 | 453432 |
Jun-19 | 412892 |
Jul-19 | 447359 |
Aug-19 | 363769 |
Sep-19 | 361232 |
Oct-19 | 451421 |
Nov-19 | 363724 |
Dec-19 | 331619 |
Three month moving average forecast is calculated by averaging out actual values for last 3 months as calculated in below excel screenshots.
All other calculations with formula are shown in the excel screenshot below.
Please give thumbs up/ likes if you consider my answer useful.
Thank you!